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Abstract.This paper studied about the information-based approach asset pricing 

model. It is constructed by Brody,Hughston, and Macrina (BHM). Then it is 

called the BHM model or the BHM approach. In the BHM model, the asset price 

is defined as the value of cash flow at recent time based on the information in the 

market. The BHM model is constructed for the single cash flow case of an asset 

paying a single dividend at fixed time. Explicitly, the model is given by 

expectation of the upcoming dividend conditional at the market  information 

filtration under the risk neutral probability measure. The information flow model 

containing the market information filtration is modelled as sum of information 

about dividends that they have  been  payed at past time (it is known the true 

information about dividends) and the noise information that there are in the 

market at recent time about the paying of the upcoming dividend. Using of Bayes 

formula is precisely to ascertain the value of cash flow ( the asset pricing ) at 

recent time based on the information about the dividends structure that  have been 

payed at past time ( as prior distribution) and the noise information in the market 

about paying of the upcoming dividend. Furthermore, the structure dividends that 

they have been payed at past time ( as prior distribution) will ascertain the 

solution of the BHM model. Brody, Hughston, and Macrina have found the 

closed form solution to  prior distribution i.e. Exponential distribution and 

Gamma distribution. This paper will express to prior distribution i.e Weibull 

distribution. 
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1. Introduction 
Once of purpose which people or investors invest will be to survive and 

increase their value of asset. There are more kind of types invesment which 

they can be used by people or investors to survive and increase their value of 

asset. Share is once of the more kind of types investment. Investors must to 

have the expectation to obtain dividends when they have invested their modal 
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in the share form. Dividend is proportion of profit that are divided for 

shareholders and they are proportional to the number of thread of their share. 

Therefore, dividend reflects the value of cash flow from an asset of share i.e. 

represents the company acceptances and it is also be represents the company 

expenseas when the company does to pay dividend to investors. While the 

investors position has invested their  modal at the chosen of type share so 

investors can ascertain their value of cash flow or their value of asset at recent 

time based on the information about dividends have been payed in the past time 

and the noise information circulating in the market at recent time about the 

paying of the upcoming dividends. 

    To depart from phenomenon as above then Brody, Hughston, and Macrina 

constructed explicitly the information-based approach asset pricing model. 

Mathematically, the information-based approach asset pricing model by 

Brody,Hughston, and Macrina is defined as the asset price or the value of cash 

flow at recent time is the expectation of the upcoming dividend conditional the 

information filtration at recent time under the risk neutral probability measure. 

Because it represents the conditional expectation so using of Bayes formula is 

precisely to ascertain the asset price or the value of cash flow at recent time for 

the BHM model. Therefore the term of prior distribution or the dividends 

structure that have been payed at past time will  also ascertain the result of asset 

price or the value of cash flow of the BHM model. For case of the certain 

dividends structure ( the certain prior distribution ) will result the closed form 

solution to the asset price or the value of cash flow of the BHM model.  Brody, 

Hughston, and Macrina have artificially found the closed form solution to the 

Exponential prior distribution and the Gamma prior distribution. This paper 

expressed the closed form solution for the dividends stucture or the prior 

distribution i.e.Weibull distribution with the scale parameter 𝛿 and the shape 

parameter 𝛽 = 2. It is also called the Rayleigh distribution. The closed form 

solution is obtained by using of Gaussian Integration.  

 

2. Constructing of the BHM model  

 
The BHM model is a model to ascertain the asset price or the value of cash 

flow at recent time based on the market information. For case i.e. cash flows are 

the paying of dividend of a associated asset with equity, so the asset price or the 

value of cash flow is given by the upcoming dividend expectation conditional 

with the information filtration in the market. Therefore the asset pricing model 

or the value of cash flow model St can be written explicitly in [5, 6] and [8, 12] 

as follows 

 

                                                 St  =  PtTEℚ[DT|ℱt]                                        ( 1 ) 



St is the value of cash flow at time t, 0 ≤ t < T  from the asset paying a single 

dividend DT at fixed time T. 

    Modelling of information flow is constructed from available of information 

in the market about cash flow or dividend . The information is contained by a 

process {𝜉t}0≤t≤T is defined in [5, 6] and [7, 12] as follows 

 

                                                 𝜉t = 𝜎tDT + 𝛽tT                                                ( 2 )   

 

Thus {𝜉t} is called the market information process. This process compose from 

two parts i.e. 𝜎tDT is the true information about dividends and process 

{βtT}0≤t≤T is a standard Brownian Bridge over the time interval [0, T], so it 

takes zero values at time 0 and T. Thus process {βtT} is the Gaussian process, 

β0T = 0, βTT = 0, βtT is random variable have mean zero ( βtT = 0) and 

cov(βsT,βtT) = s(T – t)/T,  for every  s ≤ t.( see [7, 8] ) 

    Assuming the market filtration {ℱt} is resulted from the market information 

filtration  ℱt  = σ({𝜉t}0≤s≤t). Whereas the dividend DT is ℱT-measurable but not 

ℱt-measurable, for every t < T, so that the value of DT is known at time T but is 

not known at earlier time T.( see [7, 8]). For random variable DT = x where it 

has the continue distribution, so as in [6] 

 

                                             ℚ[ T 𝜉t]   ∫   t      
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where  t(x) is the probability density of random variable DT, that is 
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By using of Bayes formula ( see [2, 9] ) so  t(x) can be expressed as follows 
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where 𝜌(𝛏t) and 𝜌(𝛏t|DT = x)  represent the probability density function and the 

conditional probability density function of random variable 𝛏t and random 

variable 𝛏t given DT = x,respectively. 

Probability density function of random variable 𝛏t can be expressed as follows : 
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So that  t(x) is held  
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If  βtT is a random variable for every t, where 0≤t≤T, the conditional 

probability density function of random variable 𝛏t given DT = x  will be the 

probability  ensity with mean σt  an  variance t(T-t)/T as follows 
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Substitusion  𝜌 𝜉t        in to Bayes formula is obtained:    
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so  ℚ[ T 𝜉t]  becomes as follows: 
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Finally, it is obtained the formula of the information-based approach asset 

pricing by Brody-Hughston-Macrina as follows : 
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3. The Weibull prior distribution on the BHM model 

 
The prior distribution p(x) on the information-based approach asset pricing 

model by Brody-Hughston-Macrina in (13) as above refer to the dividends 

structure  DT paying at past time T. Brody-Hughston-Macrina have found the 

closed form solution to the devidends structure DT that has the Exponential 

distribution with parameter 𝛿. Then it is sometimes written EXP(𝛿). Prior 

distribution p(x) for EXP(𝛿) can be expressed in [12] as follows 
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Thus the devidends structure DT has the Gamma distribution with parameter 𝛿 

and positive integer n, it is sometimes written GAM(𝛿, n) and  the prior 

distribution p(x) as in [12] as follows 
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Hence, The BHM model also results the closed form solution. 



    The Closed form solution for the dividends structure DT or the prior 

distribution is the Exponential distribution with parameter 𝛿 in [12] as follows 
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and the dividends structure DT or the prior distribution is the Gamma 

distribution with parameter 𝛿 and positive integer n so its closed form solution 

written in [12] as follows 
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where At, Bt as above and generally, part of polinomial {     }          

associated to Legendre polinomial. 

    This paper express the closed form solution to the dividends structure DT or 

the prior distribution has the Weibull distribution with the scale parameter 𝛿 

and the shape parameter 𝛽 = 2. It is sometimes written WEI(𝛿,2). Thus, the 

Weibull prior distribution is of the form 
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The closed form solution to the model in (1) for the Weibull prior distribution 

with the scale parameter 𝛿 and the shape parameter 𝛽 = 2 will be expressed in 

details as follows 
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To follow the integrals involving the exponential of a quadratic in [15] so is 

obtained 
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Thus ∫    e p          y 
 

 
 in equation ( 2 ) can be found by using of partial 

integrals (see [10] ) as follows :  
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Thus the equation in (3) is held as follows 
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Finally,  the result of St can be obtained as follows : 
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where  y = x – b, a = 
T

T-t
 ,  b =     

σ t

(
 (  -  )

    
    σ t)

 

The final result of the asset pricing model St can be expressed as follows : 
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4. Conclusion  

 
The information-based approach asset pricing model by Brody-Hughston-

Macrina modelled the asset price and the value of cash flow represents the 

expectation of the upcoming dividend conditional at the market information 

under the risk neutral probability measure. Thus the model is called the BHM 

model or the BHM approach. Using of Bayes formula is very precise to find 

the solution of this model. Somewhat artificial, Brody-Hughston-Macrina have 

ascertained for an Exponentiall distributed payout or the dividends structure 

has the Exponential distribution or the other words, its prior distribution are the 

Exponential distribution results the closed form solution. Brody-Hughston-

Macrina also find the closed from solution to the Gamma prior distribution. 

This paper express the closed form solution to the Weibull prior distribution. 
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