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Accurate Calculations of Molecular Properties with Explicitly Correlated
Methods

Jinmei Zhang

(ABSTRACT)

Conventional correlation methods suffer from the slow convergence of electron correlation
energies with respect to the size of orbital expansions. This problem is due to the fact
that orbital products alone cannot describe the behavior of the exact wave function at short
inter-electronic distances. Explicitly correlated methods overcome this basis set problem by
including the inter-electronic distances (rij) explicitly in wave function expansions. Here,
the origin of the basis set problem of conventional wave function methods is reviewed, and a
short history of explicitly correlated methods is presented. The F12 methods are the focus
herein, as they are the most practical explicitly correlated methods to date. Moreover, some
of the key developments in modern F12 technology, which have significantly improved the
efficiency and accuracy of these methods, are also reviewed.

In this work, the extension of the perturbative coupled-cluster F12 method, CCSD(T)F12,
developed in our group for the treatment of high-spin open-shell molecules (J. Zhang and E.
F. Valeev, J. Chem. Theory Comput., 2012, 8, 3175.), is also documented. Its performance
is assessed for accurate prediction of chemical reactivity. The reference data include reaction
barrier heights, electronic reaction energies, atomization energies, and enthalpies of formation
from the following sources: (1) the DBH24/08 database of 22 reaction barriers (Truhlar et
al., J. Chem. Theory Comput., 2007, 3, 569.), (2) the HJO12 set of isogyric reaction energies
(Helgaker et al., Modern Electronic Structure Theory, Wiley, Chichester, first ed., 2000.),
and (3) the HEAT set of atomization energies and heats of formation (Stanton et al., J.
Chem. Phys., 2004, 121, 11599.). Two types of analyses were performed, which target
the two distinct uses of explicitly correlated CCSD(T) models: as a replacement for the
basis-set-extrapolated CCSD(T) in highly accurate composite methods like HEAT and as a
distinct model chemistry for standalone applications. Hence, (1) the basis set error of each
component of the CCSD(T)F12 contribution to the chemical energy difference in question
and (2) the total error of the CCSD(T)F12 model chemistry relative to the benchmark values
are analyzed in detail. Two basis set families were utilized in the calculations: the standard
aug-cc-p(C)VXZ (X = D, T, Q) basis sets for the conventional correlation methods and the
cc-p(C)VXZ-F12 (X = D, T, Q) basis sets of Peterson and co-workers that are specifically
designed for explicitly correlated methods. The conclusion is that the performance of the two
families for CCSD correlation contributions (which are the only components affected by the
explicitly correlated terms in our formulation) are nearly identical with triple- and quadruple-
ζ quality basis sets, with some differences at the double-ζ level. Chemical accuracy (∼ 4.18
kJ/mol) for reaction barrier heights, electronic reaction energies, atomization energies, and



enthalpies of formation is attained, on average, with the aug-cc-pVDZ, aug-cc-pVTZ, cc-
pCVTZ-F12/aug-cc-pCVTZ, and cc-pCVDZ-F12 basis sets, respectively, at the CCSD(T)F12

level of theory. The corresponding mean unsigned errors are 1.72 kJ/ mol, 1.5 kJ/mol, ∼ 2
kJ/mol, and 2.17 kJ/mol, and the corresponding maximum unsigned errors are 4.44 kJ/mol,
3.6 kJ/mol, ∼ 5 kJ/mol, and 5.75 kJ/mol.

In addition to accurate energy calculations, our studies were extended to the computation
of molecular properties with the MP2-F12 method, and its performance was assessed for
prediction of the electric dipole and quadrupole moments of the BH, CO, H2O, and HF
molecules (J. Zhang and E. F. Valeev, in preparation for submission). First, various MP2-
F12 contributions to the electric dipole and quadrupole moments were analyzed. It was found
that the unrelaxed one-electron density contribution is much larger than the orbital response
contribution in the CABS singles correction, while both contributions are important in the
MP2 correlation contribution. In contrast, the majority of the F12 correction originates from
orbital response effects. In the calculations, the two basis set families, the aug-cc-pVXZ (X
= D, T, Q) and cc-pVXZ-F12 (X = D, T, Q) basis sets, were also employed. The two basis
set series show noticeably different performances at the double-ζ level, though the difference
is smaller at triple- and quadruple-ζ levels. In general, the F12 calculations with the aug-cc-
pVXZ series give better results than those with the cc-pVXZ-F12 family. In addition, the
contribution of the coupling from the MP2 and F12 corrections was investigated. Although
the computational cost of the F12 calculations can be significantly reduced by neglecting
the coupling terms, this does increase the errors in most cases. With the MP2-F12C/aug-cc-
pVDZ calculations, dipole moments close to the basis set limits can be obtained; the errors
are around 0.001 a.u. For quadrupole moments, the MP2-F12C/aug-cc-pVTZ calculations
can accurately approximate the MP2 basis set limits (within 0.001 a.u.).
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Chapter 1

Introduction

Through its eighty-year history, quantum chemistry has developed into a useful tool for
chemists in a wide variety of areas to explain experimental observations, validate experi-
mental data, and even predict experimental results. In some applications, computation has
become as reliable as experiments. Wave function methods are one of the important com-
ponents in quantum chemistry. Despite the success of these methods, the conventional wave
function methods suffer from the slow convergence problem of electron correlation energies
in orbital expansions, and this problem is exacerbated by the steep increase of computational
cost with the basis set size (i.e. as the orbital expansion becomes larger).

The slow convergence problem is due to the sole use of Slater determinants in conventional
wave function methods, which are written as products of orbitals (one-electron functions).
However, orbital products alone cannot describe the behavior of the exact wave function at
short inter-electronic distances, where it has a cusp. In standard wave function methods,
such as the coupled-cluster singles and doubles augmented by perturbative treatment of
triples (CCSD(T)) or multireference configuration interaction (MRCI) methods, basis sets
errors of electron correlation energies in atoms decrease as O[(Lmax + 1)−3] for a basis set
saturated to the angular momentum Lmax.8 This problem can be overcome by using explicitly
correlated methods, which include the inter-electronic distances (rij) explicitly in the wave
function expansions. For atoms, the explicitly correlated methods proposed by Kutzelnigg,9

commonly known as R12, or F12, methods, have a basis set error of O[(Lmax + 1)−7].

The efficiency and accuracy of F12 methods have been significantly improved in the past
decade by the modern F12 technology, and they have become common tools in compu-
tational chemistry to calculate accurate ground-state energies.2,10 In general, modern F12
methods require a basis set of two cardinal numbers lower than the comparable conventional
methods in order to obtain the same accuracy. In the past, the F12 methods have been
mainly used to obtain a better description of correlation energies, whereas F12 calculations
of molecular properties, such as dipole moments and polarizabilities, can be found in only
a few studies.11–14 Compared with the single-point energy calculation, the analytic evalu-

1
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ation of molecular properties is much more complicated and computationally demanding.
The extension of F12 methods to calculations of molecular properties offers the possibility
of their accurate prediction for larger systems with lower computational cost. Furthermore,
F12 calculations cannot be considered as black-box applications yet, despite the tremendous
progress in the development of F12 methods. One of the issues, among many, is the require-
ment for particular orbital basis set types in F12 computations. So far, the recommended
basis sets remain the cc-pVXZ-F12 series of Peterson et al.15–17 and the standard aug-cc-
pVXZ series of Dunning et al.18–20 One of our goals in this work is to systematically evaluate
these two basis set series for F12 calculations of various molecular properties.

In this work, we first present a brief review of conventional wave function methods, and then
discuss the origin of the slow convergence problem in these methods. A short history of early
explicitly correlated methods is given in Chapter 2, but our focus is the modern F12 methods
(Chapter 3), the most practical and promising explicitly correlated methods. In Chapter 4,
we document the extension of the perturbative coupled-cluster F12 method, CCSD(T)F12,
developed in our group for the treatment of high-spin open-shell molecules. We assessed its
performance for accurate studies of chemical reactivity by performing benchmark calcula-
tions of reaction barrier heights and thermochemical properties including electronic reaction
energies, atomization energies, and heats of formation. In the last chapter, we present the
analytical evaluation of the relaxed one-electron density with the MP2-F12 method, and
discuss its application to compute the one-electron molecular properties: electric dipole and
quadrupole moments.

1.1 Born-Oppenheimer Approximation

The central equation in quantum chemistry is the time-independent molecular Schrödinger
equation,(

−1

2

∑
i

∇2
i −

1

2MA

∑
A

∇2
A −

∑
i

∑
A

ZA
riA

+
∑
A<B

ZAZB
rAB

+
∑
i<j

1

rij

)
Ψ = EΨ (1.1)

where i and j represent the ith and jth electrons, A and B represent the Ath and Bth
nuclei, Z is the nuclear charge, and r is the distance between two particles. This equation
describes the physics of the electrons and nuclei in the atoms and molecules. If we could find
the solution to this equation, we would be able to determine all properties of the system.
Unfortunately, we can only solve this equation exactly for one-electron systems (hydrogen-
like atoms) as the potential energy of the electron-electron interaction (

∑
r−1
ij ) couples the

coordinates of all electrons. For all other systems, we can only obtain approximate solutions
to this equation. In most chemistry applications, the Born-Oppenheimer (BO) approxima-
tion21 is assumed, where only the motion of electrons is considered since nuclei are much
heavier than electrons, and thus move much slower. The BO approximation simplifies the
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problem to solving the electronic Schrödinger equation,(
−1

2

∑
i

∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i<j

1

rij

)
Ψelec = EelecΨelec, (1.2)

where the kinetic energies for the nuclei are zero, and the nuclear repulsion becomes constant.
Even within this framework, however, it is still impossible to find the exact solution to the
electronic Schrödinger equation of many-electron systems.

1.2 Hartree-Fock Method

The Hartree-Fock (HF) method22 is one of the simplest approximate methods used to solve
the electronic Schrödinger equation. Moreover, it often serves as the starting point for other,
more accurate methods. For the ground state of an N-electron system, the HF wave function
is a single Slater determinant of molecular spin-orbitals,

Ψ0 =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN(x1)
χ1(x2) χ2(x2) . . . χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣ , (1.3)

where a molecular spin-orbital occupied by an electron, χ(x), is comprised of two parts: a
spatial function, ψ(r), and a spin function, α(w) or β(w), and x represents both the spacial
and spin coordinates: x = {r, w}. For convenience, the Slater determinant is often written
as

Ψ0 = |χ1χ2 · · ·χN〉, (1.4)

and the spin-orbital, χ(xi), is usually written as χ(i). In most molecular calculations, the
spatial function is expressed as a linear combination of basis funcitons,

ψi(r) =
K∑
µ=1

Cµiφµ(r) (i = 1, 2, · · · , K) (1.5)

where {φµ} is a set of known functions (atomic orbitals or basis functions), and Cµi are
molecular orbital (MO) coefficients which can be determined using the variational method.
This approach is known as the Hartree-Fock-Roothaan method.23 In this method, the pre-
cision of the HF method is determined by the completeness of the basis set, i.e. the more
complete the basis set, the more precise the result. Within the HF approximation, a com-
plete basis set yields the exact solution, the Hartree-Fock limit. In practice, however, finite
basis sets are used, which introduces errors in the energy.
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The HF energy is obtained by minimizing the expectation value of the Hamiltonian, 〈Ψ0|Ĥ|Ψ0〉,
with respect to the molecular orbitals. In this process, the following Hartree-Fock equations
can be obtained:

F̂iχ(i) = εiχ(i) (1.6)

with

F̂i = −1

2
∇2
i −

M∑
A=1

ZA
riA

+ vHF(i), (1.7)

where F̂i is the Fock operator, and vHF(i) is the HF potential, an average potential experi-
enced by the ith electron. The HF potential can be written as

vHF(i) =
∑
j

(
Ĵj(i)− K̂j(i)

)
, (1.8)

where the Coulomb operator, Ĵj, and the exchange operator, K̂j, are defined as

Ĵj(1)χi(1) = 〈χj(2)| 1

r12

|χj(2)〉χi(1), (1.9)

K̂j(1)χi(1) = 〈χj(2)| 1

r12

|χi(2)〉χj(1). (1.10)

Thus, the HF potential is comprised of two parts: the average Coulomb potential and the
exchange potential which results from the antisymmetric requirement of the wave function
with respect to the interchange of electronic coordinates. Essentially, the spontaneous elec-
tron repulsion, or correlation, is replaced by an average potential field in the HF method.
The difference between the exact (nonrelativistic) energy and HF energy of a system is called
the electron correlation energy:

Ecorr = Eexact − EHF. (1.11)

While the HF energy typically accounts for more than 99% of the total electronic energy of a
molecule, the electron correlation energy, is critical for the accurate prediction of quantities
of chemical interest. Consider the binding energy in H2 as an example: the contribution from
the correlation effects is about 25 kcal/mol.24 As the number of electron pairs increases, so do
the correlation effects. For highly accurate calculations, it is necessary to properly describe
the correlation between the motion of the electrons.

1.3 Standard Correlation Methods

In a HF calculation with a basis set of K functions, we can obtain 2K spin-orbitals: N occu-
pied orbitals and 2K−N virtual (or unoccupied) orbitals, where N is the number of electrons
in the system. While the HF ground state, Φ0, is formed by occupied spin-orbitals, excited
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determinants, Φab...
ij... , can be formed by substituting occupied orbitals (denoted by i, j, ...) in

Φ0 with virtual orbitals (denoted by a, b, ...). In the conventional correlation methods,25 such
as configuration interaction (CI) methods, coupled-cluster (CC) methods, and many-body
perturbation theory (MBPT), electron correlation effects are taken into account by including
these excited determinants in the approximate wave functions. The differences among these
methods lie in the computational procedures for determining expansion coefficients and the
expressions for molecular energies and properties.

1.3.1 Configuration Interaction methods

In CI methods,22 the approximate wave function is written as a linear combination of multiple
determinants:

Ψ = C0Φ0 +
∑
i,a

Ca
i Φa

i +
∑
i<j
a<b

Cab
ij Φab

ij + · · · , (1.12)

where Φa
i and Φab

ij are the singly and doubly excited determinants, and C0, Ca
i , etc. are ex-

pansion coefficients that are determined with the variational method (i.e. the minimization
of the CI energy). In CI calculations, the accuracy of results depends on both the level of
excitation and the basis set that is used to construct excited determinants. If all the possible
excitations could be taken into consideration and the complete basis set could be used, the
resulting “full CI” would be the exact solution to the electronic Schrödinger equation. How-
ever, the computational cost of the full CI scales factorially with the number of electrons and
basis functions. Therefore, truncated CI methods with a finite basis set are used in practice.
In the CISD approximation (truncated at single and double excitations), for example, the
determinant basis consists of the reference, Φ0, single excitations, Φa

i , and double excitations,
Φab
ij , and it has a scaling of O(N6). For methods beyond CISD, the computation can become

very expensive.

While the full CI method is size-consistent (i.e. the energy of n isolated fragments is equal
to n times the energy of one fragment) and size-extensive (i.e. the energy of a system scales
linearly with the number of particles in the systems), the truncated CI methods are not. The
size-consistency is particularly important for the proper description of dissociation energies,
and the lack of this property in truncated CI methods has considerably reduced their ap-
plicability.26 The CI theory has played an important role in the development of correlation
methods, and was the most often used correlation method in the early days of quantum
chemistry. Today, the MBPT and CC models, which are both size-consistent and size-
extensive, have replaced the CI methods and become the preferred methods. Nevertheless,
there is still continuous interest in the CI theory in the multireference context, whereas the
multireference CC theory is more difficult.
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1.3.2 Coupled-Cluster Methods

In the CC method,27 the wave function is written as

Ψcc = eT̂Φ0 =

(
1 + T̂ +

1

2
T̂ 2 + · · ·

)
Φ0 (1.13)

with
T̂ = T̂1 + T̂2 + T̂3 + · · · , (1.14)

where the exponentiated cluster operator is used to generate excited determinants. The
n-electron cluster operator is defined as

T̂n =

(
1

n!

)2 n∑
ij...ab...

tij...ab...a
†
ab
†
b · · · ajai (1.15)

in the second quantization form, where ai represents an annihilation operator, which removes
an electron from the orbital ψi in the determinant when acting on the reference determinant,
and a†a is a creation operator, which adds an electron to the orbital ψa in the determinant.

In the traditional CC theory, the electronic Schrödinger equation, ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉, is

reformulated by multiplying e−T̂ on the left side:

e−T̂ ĤeT̂ |Φ0〉 = E|Φ0〉, (1.16)

where e−T̂ ĤeT̂ is called the similarity-transformed Hamiltonian. This similarity-transformed
Hamiltonian can be transformed into a linear combination of nested commutators of Ĥ and
T̂ :

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂ ] +
1

2!
[[Ĥ, T̂ ], T̂ ] +

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ]

+
1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ] + · · · (1.17)

with the Baker-Campbell-Hausdorff (BCH) expansion, and it truncates itself at the four-fold
commutator independent of the system or the cluster operator. Moreover, the CC amplitude
equations are energy-independent with the similarity-transformed Hamiltonian:

〈Φab...
ij... |e−T̂ ĤeT̂ |Φ0〉 = 0. (1.18)

These amplitude equations are obtained by projecting the excited determinants on both
sides of Eq. 1.16. Similarly, the energy equation is obtained by projecting the reference
determinant on both sides:

〈Φ0|e−T̂ ĤeT̂ |Φ0〉 = E. (1.19)

If all cluster operators are included, the resulting full CC energy is equivalent to the full
CI value. However, the cluster operator is usually truncated at a finite rank in practice,
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which leads to a hierarchy of coupled-cluster methods. In the coupled-cluster singles and
doubles (CCSD) method, for example, T̂ ≡ T̂1+T̂2. Although the CCSD method is relatively
expensive (scales as O(N6)), it is often not accurate enough (i.e. above chemical accuracy,
> 4.18 kJ/mol). Take the reaction energy of 2CH2 → C2H4 (Figure 1.1) as an example:
even with the large aug-cc-pVQZ basis set, the CCSD result has a error of 20.1 kJ/mol
with respect to the experimental value. On the other hand, the CCSD(T) model, which
includes a perturbative treatment of triples, can give results close to the experiment. For
many properties, the CCSD(T) model has been shown to give consistent highly accurate
results, and it is considered to be the “gold-standard of quantum chemistry.”28

Ë

Ë
Ë
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Figure 1.1: Calculated reaction energies (kJ/mol) of 2CH2 → C2H4 with various correlation
methods. The dashed line represents the experimentally derived value,1 and the red lines
denote chemical accuracy. Valence conventional and explicitly correlated calculations were
performed, and thus the core correlation contribution from the reference1 was added to the
results.

1.3.3 Many-Body Perturbation Theory

Perturbation theory is one of the mathematical tools which has been used since early quan-
tum chemistry to include descriptions of electron correlations in calculations. It provides a
systematic procedure to obtain the correlation energy of a system. In MBPT,22 the Hamil-
tonian is partitioned into the zeroth-order and a small perturbation:

Ĥ = H(0) + λV̂ , (1.20)
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where the eigenfunctions and eigenvalues for the zeroth-order Hamiltonian are known, and
λ is a perturbation-strength parameter and set to unity in the end. Furthermore, the exact
energy and wave function can each be expressed as an infinite sum of corrections from
different orders:

E = E(0) + λE(1) + λ2E(2) + · · · , (1.21)

Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + · · · . (1.22)

By inserting the above expressions into the electronic Schrödinger equation and then equating
the same order of λ, the expressions for energies of different orders can be obtained:

E(0) = 〈Ψ(0)|H(0)|Ψ(0)〉, (1.23)

E(1) = 〈Ψ(0)|V̂ |Ψ(0)〉, (1.24)

E(2) = 〈Ψ(0)|V̂ |Ψ(1)〉, (1.25)

...

In the Møller-Plesset perturbation theory, the HF Hamiltonian is chosen as the zeroth-order
Hamiltonian:

H(0) =
∑
i

F̂i, (1.26)

and the perturbation is then given by

V̂ =
∑
i<j

1

rij
−
∑
i

vHF(i). (1.27)

As a result, the first-order wave function is the HF wave function, and the sum of the zeroth-
and first-order energy is the HF energy. The first correlation correction to the HF energy
appears in the second-order Møller-Plesset method (MP2):

E(2) =
1

4

∑
ijab

|〈Φ0|V̂ |Φab
ij 〉|2

εi + εi − εa − εb
. (1.28)

The MP2 method recovers about 80 to 90% of the correlation energy. With higher order
corrections, such as MP3 and MP4 corrections, the correlation energy can be described
more accurately. In some cases, however, MPn energies have been shown to diverge as n
increases,1 and MP2 is the most used method in the series. Although the MP2 method is
less accurate than the CCSD or CISD methods, it has a lower scaling as O(N5). Moreover,
it is both size-consistent and size-extensive. Thus MP2 represents a good method for studies
of moderate-size systems.
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1.4 Density Functional Theory

An alternative approach to standard correlation methods is the density functional theory
(DFT),29 in which correlation effects are included implicitly. In this approach, the explicit use
of the many-electron wave function is avoided. According to the Hohenberg-Kohn theorem,30

there is a unique functional relationship between the electron density and the Hamiltonian
for a given system, and all the properties of the system can be parametrized through the
electron density. Therefore, the energy can be expanded as:

E0 = E0[ρ0] = T [ρ0] +N e[ρ0] + V ee[ρ0], (1.29)

where E0 is the electronic energy of the ground state, ρ0 is the corresponding electron
density that must be modeled in practice, and T [ρ0], N e[ρ0], and V ee[ρ0] correspond to the
electronic kinetic energy, electron-nucleus attraction, and electron-electron repulsion, respec-
tively. Practical implementation of DFT uses the Kohn-Sham (KS) formulation,31 which is
based on a single Slater-determinant wave function. The difference between the KS-DFT
and HF methods is that KS-DFT accounts for the electron correlation and exchange effects
via an exchange-correlation (XC) functional of the density. If the exact functional could
be obtained, KS-DFT methods would give the exact solution to the electronic Schrödinger
equation. In practice, however, the functional needs to be modeled. Modern KS-DFT meth-
ods usually use hybrid density functionals (e.g., B3LYP), which are linear combinations of
the HF exchange, DFT exchange, and DFT correlation functionals.

Compared with standard correlation methods, DFT methods have relatively low computa-
tional cost (O(N4) as opposed to O(N5) to O(N7) for standard correlation methods, where
N is the size of the system), but give relatively accurate results (comparable to MP2, or
better). Therefore, DFT has gained widespread popularity in chemistry over the last two
decades. However, DFT recovers electron correlation effects in an empirical way,32 which
means there is no systematic way to improve the accuracy of DFT calculations. Thus, DFT
is considered a “non-convergent” method, and wave function methods are the only means to
reliably approach the exact solution of the electronic Schrödinger equation.

1.5 Slow Convergence Problem of Correlation Energy

As we mentioned earlier, the accuracy of correlation energies in standard correlation methods
depends on both the level of excitation and the basis set which is used to construct excited
determinants. Therefore, the choices for the level of excitation and the basis set need to be
balanced. There is little gain in accuracy to include higher excitations when the basis set
errors are larger than or close to errors from neglecting higher excitations. Unfortunately, the
decay of errors in correlation energies is inversely proportional to the size of the basis set.33

This means the size of the basis set needs to be increased by a factor of ten for an order of
magnitude improvement in the accuracy. Moreover, this slow convergence problem is coupled
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with a steep increase of the computational cost as the basis size increases. Since four-index
two-electron integrals are involved in all standard correlation methods, the computational
cost of calculations with those methods scales as, at least, O(K4) (K is the number of basis
functions), which results in 10,000 fold increase in the computational time for one digit
reduction in the basis set error.

The sole use of Slater determinants in standard correlation methods is the reason for the
slow convergence problem of correlation energies with respect to the basis set size. This is
because these Slater determinants are constructed with products of one-electron orbitals,
but the Coulomb hole that appears at short inter-electronic distances cannot be efficiently
described by products of one-electron orbitals alone.34 This issue can be simply illustrated
with the helium atom. The nonrelativistic electronic Hamiltonian for the helium atom is
written as

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1

− 2

r2

+
1

r12

. (1.30)

As the two electrons approach each other (r12 → 0), the Coulomb potential will approach
infinity, and the Hamiltonian will become singular. To satisfy the Schrödinger equation,
ĤΨ = EΨ, the singularity must be balanced by an opposite infinity in the kinetic energy.
This can be demonstrated by the Hamiltonian for the helium ground state written in the
electron-nucleus distances (r1 and r2) and the electron-electron distances (r12):35

Ĥ = −1

2

2∑
i=1

(
∂2

∂r2
i

+
2

ri

∂

∂ri
+

2Z

ri

)
−
(
∂2

∂r2
12

+
2

r12

∂

∂r12

− 1

r12

)
−
(

r1
r1

· r12
r12

∂

∂r1

+
r2
r2

· r21
r21

∂

∂r2

)
∂

∂r12

, (1.31)

where the singularity at the electron coalescence can be cancelled by the kinetic energy term,
2/r12(∂/∂r12). This requirement leads to the Coulomb cusp condition:36

∂Ψ

∂r12

∣∣∣∣
r12=0

=
1

2
Ψ(r12 = 0), (1.32)

which describes the behavior of the wave function when the electrons coalesce. The Coulomb
cusp condition suggests that the wave function for the singlet states becomes linear in r12

when the two electrons are close,

Ψ(r1, r2) = Ψ(r12 = 0)
(
1 +

1

2
r12 + · · ·

)
. (1.33)

For triplet states, there is no infinity in the Schrödinger equation as the wave function
becomes zero at the points of the electron coalescence. Yet the wave function for triplet
states of the helium atom also has a discontinuity but in the second derivative:

∂2Ψ

∂r2
12

∣∣∣∣
r12=0

=
1

2

∂Ψ

∂r12

∣∣∣∣
r12=0

. (1.34)
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This condition indicates that the behavior of the triplet helium wave function near the
electron coalescence has the following form:

Ψ(r1, r2) = r12 ·w
(
1 +

1

4
r12 + · · ·

)
(1.35)

where w is the vector (∂Ψ/∂x12, ∂Ψ/∂y12, ∂Ψ/∂z12) evaluated at the electron coalescence.

These conditions are rigorously observed by the exact wave functions, but not CI-like wave
functions (Eq. 1.12). As a consequence, very high angular momenta must be included in
the basis set to describe the short-range two-electron correlation.2 A more efficient way to
describe electron correlations is to include r12 explicitly in wave function expansions, and
thus the basis set convergence of correlation energies can be improved. Methods where
the approximate wave functions depend explicitly on r12 are called explicitly correlated
methods. In Figure 1.1, for example, the CCSD(T) reaction energy converges very slowly
to the experimental value, and only with the large aug-cc-pVQZ basis set does it approach
the experimental value. However, the explicitly correlated method, CCSD(T)F12, gives a
reaction energy near the experimental value even at the double-ζ level.



Chapter 2

Overview of Early Explicitly
Correlated Methods

The use of inter-electronic distances in wave functions dates back to the beginning of quantum
mechanics in the late 1920s.35 Early explicitly correlated methods are only applicable to very
small systems; their extensions to many-electron systems are very difficult. The major hurdle
for the applications of explicitly correlated methods to systems with more than two electrons
is the evaluation of numerous and expensive many-electron integrals, which result from the
use of functions that depend explicitly on inter-electronic distances. Over the years, various
strategies have been developed to overcome this technical challenge. These efforts include the
use of Gaussian geminals,37,38 similarity-transformed Hamiltonian,39,40 and, more recently,
the resolution of identity9 in the R12 methods.

2.1 Methods for Two-Electron Systems

2.1.1 Hylleraas Expansion

In 1929, Hylleraas realized that the slow convergence problem for the helium atom can be
overcome by including the r12 term explicitly in the wave function.35 The wave function he
employed has the following form:

Ψ = e−ζs(c1 + c2u+ c3t
2), (2.1)

where the coordinates: s = r1 + r2, t = r1 − r2, and u = r12 are used, and the exponential
coefficient, ζ, and the expansion coefficients, ci, can be determined variationally. By using
this three-term wave function with ζ = 1.82, he was able to obtain the ground-state energy of
helium as -2.90243 Eh. This result differs from the exact Born-Oppenheimer nonrelativistic
value by 1.3 mEh (3.4 kJ/mol), which was a dramatic breakthrough at that time. It should

12
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be noted that the success of the Hylleraas wave function is not merely due to the inclusion
of the linear r12 term. The inclusion of both r12 and (r1 − r2)2 are necessary, and the
reoptimization of the orbital shape, via the adjustment of exponent ζ, is also important.2

A general form of the Hylleraas expansion for a 1S state of a two-electron atom can be
written as:

Ψ = e−ζs
M∑
i=1

cis
lit2miuni , (2.2)

where li, mi, and ni are non-negative integers. These Hylleraas expansions have been shown
to converge much more rapidly than CI wave functions. Figure 2.1 presents the errors of
helium ground-state energies computed with a Hylleraas expansion and a conventional CI
wavefunction.2 It is clear that the Hylleraas expansion outperforms the CI expansion, and
approaches spectroscopic accuracy (1 cm−1) very rapidly.

è CI

è Hylleraas

0 5 10 15

10-6

10-4

0.01

1

LMax

E
rr

or
in

E
h

Figure 2.1: The errors of the helium ground-state energy computed with the Hylleraas
expansion and the conventional CI wavefunction (reproduced with data from E. F. Valeev,
original figure published in Chem. Rev., 2012, 112, 75.). The dashed line denotes chemical
accuracy, and the dotted line represents spectroscopic accuracy. The Hylleraas wave function
includes all terms k + l + m ≤ 2Lmax, and has an orbital exponent fixed at 1.8149. The CI
expansion was computed with a basis sets of modified hydrogenic orbitals with angular
momentum up to Lmax and principal quantum number up to Lmax + 1 (see Ref. 2 for more
details).
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The Hylleraas-type wave functions have been subsequently applied to helium-like, and even
lithium-like, atoms.9,41 It is possible to generalize the Hylleraas approach to many-electron
systems. For example, the Hylleraas-CI method has been applied to systems with up to
ten electrons.42 However, numerous many-electron integrals appear in the formalism due
to the inter-electronic distances, and their evaluation quickly becomes very expensive and
complicated as the number of electrons increases, which severely limits the application of
the Hylleraas method.

2.1.2 James-Coolidge Wave Function

In 1933, James and Coolidge extended the Hylleraas approach to the H2 molecule,43 which is
the first molecular system studied with explicitly correlated wave functions. Their spin-free
singlet wave function for the H2 molecule is written as:

ΨJC =
∑
i

Ci
(
Ψi(1, 2) + Ψi(2, 1)

)
(2.3)

with

Ψi(1, 2) = e−α(ξ1+ξ2)ξni
1 η

ki
1 ξ

mi
2 ηli2 r

µi
12. (2.4)

Here,

ξi =
(riA + riB)

R
, (2.5)

ηi =
(riA − riB)

R
(2.6)

are the elliptic coordinates, A and B represent the hydrogen nuclei, R is the internuclear
distance, ki, mi, li and µi are non-negative integers, and α is a variational parameter. With
a thirteen-term James-Coolidge (JC) expansion, the energy calculated for the ground state
of H2 has an error of 0.917 mEh with respect to the best variational value (-1.174476 Eh).
Despite this, the JC wave function fails to give a correct description for the dissociation
behavior of H2.

In 1965, Ko los and Wolniewicz improved the JC wave function with expansions in terms of
the following basis functions:44

Ψi(1, 2) = e−αξ1−ᾱξ2ξni
1 η

ki
1 ξ

mi
2 ηli2 r

µi
12

(
eβη1+β̄η2 + (−1)ki+lie−βη1−β̄η2

)
, (2.7)

where ᾱ and β̄ are also nonlinear variational parameters as α and β. With such a basis,
the Ko los-Wolniewicz (KW) function correctly describes the dissociation of H2. In principle,
it is possible to extend the KW function to more than two electrons systems. However,
the evaluation of many-electron integrals that result from inter-electronic distances is still a
limiting factor for its application to many-electron systems.
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2.2 Methods for Many-Electron Systems

2.2.1 Gaussian Geminal Methods

In Gaussian geminal methods, the use of explicitly correlated Gaussian functions allows the
many-electron integrals to be evaluated analytically. In the two-electron case, these functions
are referred to as Gaussian geminals, which can be in general expressed as

gk(r1, r2) = exp(−αk|r1 −Ak|2 − βk|r2 −Bk|2 − γkr2
12) (2.8)

where r12 is the inter-electronic distance, and the exponents (αk, βk, and γk) and the centers
(Ak and Bk) are all variational parameters. A single Gaussian geminal does not satisfy the
cusp condition, but a linear combination of these functions with optimized parameters can
effectively describe this behavior. This idea was first proposed by Boys37 and Singer38 in
1960. Since then, it has been used successfully for many applications. For example, the
calculations with Gaussian geminal methods on H2 and He2 gave highly accurate predictions
for the energies.45,46 However, the complexity of these methods grows rapidly with the num-
ber of electrons in the system. Thus early Gaussian geminal methods are only feasible for
systems with four or fewer electrons.

For larger systems, modern Gaussian geminal methods47–51 utilize geminal functions in the
framework of MBPT or CC methods, in which the HF determinant is the starting point
and geminal functions are only included in the form of pair functions. The coupled-cluster
doubles (CCD) wave function, for example, is

ΨCCD = eT̂2Φ0

= Ψ0 +
∑
i<j
a<b

tijabΨ
ab
ij +

1

2

∑
i<j
a<b

∑
k<l
c<d

tijabt
kl
cdΨ

abcd
ijkl + · · · (2.9)

where tijab are undetermined double excitation amplitudes, and T̂2 is the two-electron cluster
operator used to generate doubly substituted (or excited) determinants. The two-electron
cluster operator can be written as

T̂2 =
∑
i<j

|τij〉〈ij| (2.10)

with pair functions:

|τij〉 =
∑
a<b

tijab|ab〉, (2.11)

where i and j represent the occupied orbitals while a and b represent the virtual orbitals. In
Gaussian geminal methods, pair functions are expanded in terms of Gaussian geminals:

|τ̂ij〉 = Q̂12

∑
k

tijk |g
ij
k (r1, r2)〉. (2.12)
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In the new pair functions, tijk are geminal amplitudes to be determined, and Q̂12 is a projection
operator that ensures pair functions are strongly orthogonal to products of occupied orbitals.

When Gaussian geminals are employed within the MBPT and CC frameworks, up to five-
electron integrals can appear. The evaluation of these integrals becomes challenging for
larger systems. In an attempt to reduce the complexity of the methods, approximations
such as weak orthogonality (WO), super weak orthogonality (SWO), and SWO plus projec-
tion (SWOP) were introduced.47,48 With these approximations, calculations with Gaussian
geminals have been successfully applied to systems with up to ten electrons.49,50

2.2.2 Exponentially Correlated Gaussian Methods

Explicitly correlated Gaussian functions are also used in exponentially correlated Gaussian
(ECG) methods.52–54 The approximate wave function in these methods is expanded with a
basis set of n-electron functions, which correlate the motion of all pairs of electrons. The
spatial part of an N-electron basis function takes the following form:

Ψk(r1, · · · , rn) = exp

(
−

n∑
i=1

αki |ri −Ck
i |2 −

n∑
i<j=1

βkij|ri − rj|2
)
. (2.13)

Due to the Gaussian form, n-electron integrals in ECG methods can be evaluated analyt-
ically.52 As encountered in Gaussian geminal methods, however, the computational cost of
n-electron integrations is very expensive. Moreover, a large number of nonlinear parameters
need to be optimized in the process of energy minimization due to the use of n-electron
basis functions. As a result, ECG methods have only been applied to systems with up to
four electrons. For small molecules, ECG methods are an effective approach for highly accu-
rate calculations. For example, a 2400-term ECG expansion has been used to compute the
ground-state energy of LiH, and the resulting error is 15µEh.

55

2.2.3 Transcorrelated Methods

In the transcorrelated method of Boys and Handy,39,40 a similarity-transformed Hamiltonian,

H̄G = e−ĜĤeĜ (2.14)

with

Ĝ =
∑
i<j

f(ri, rj), (2.15)

is used. The similarity-transformed Hamiltonian contains only one-, two-, and three-electron
operators, as the Hausdorff expansion,

H̄G = Ĥ + [Ĥ, Ĝ] +
1

2
[[Ĥ, Ĝ], Ĝ] + · · · , (2.16)
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truncates at the quadratic (third) term. Therefore, only two- and three-electron integrals
are involved in this formulation. In Handy’s study, the correlation function is comprised of
Gaussian geminals and Gaussian atomic functions:

f(ri, rj) =
∑
κ

cκgκ(ri, rj) +
∑
λ

dλ
(
gλ(ri) + gλ(rj)

)
, (2.17)

which allows the many-electron integrals involved to be computed analytically. With a
small expansion of f(ri, rj), highly accurate results can be obtained for small systems (e.g.,
atoms and LiH). However, the transformed Hamiltonian is non-Hermitian, which means the
energies calculated with the transcorrelated method are not variational. As a result, a more
flexible, one-electron basis set is required to obtain stable results compared to other explicitly
correlated methods.

Following the studies of Boys and Handy, Ten-no56 developed the transcorrelated method
with a frozen Gaussian geminals. In this approach, the Coulomb repulsion is canceled at
short inter-electronic distances. It is possible to apply this transcorrelated method to large-
scale systems, but the quality of the results was not encouraging. Recently, Luo et al.57

proposed a new variational transcorrelated method, and they demonstrated that it could be
an efficient method to deal with electron correlations.



Chapter 3

Modern R12/F12 Methods

In 1985, Kutzelnigg9 proposed a new explicitly correlated method: the R12 method, wherein
he also introduced the resolution of the identity (RI) to solve the many-electron integral
problem. In this approach, conventional wave functions are augmented with a reference
determinant multiplied by linear rij factors, which can better describe the wave function in
the region near the electron coalescence. This formalism is much simpler than those of many
older explicitly correlated methods. Take the helium atom as an example: its R12 wave
function can be written as a linear combination of the reference function (Φ), conventional
correlation term(χ), and explicitly correlated term:

Ψ(r1, r2) = Φ(r1, r2) + χ(r1, r2) + cr12Φ(r1, r2). (3.1)

Since the R12 wave function is merely a linear combination of Slater determinants augmented
by a few explicitly correlated terms, it can, in principle, be implemented with any conven-
tional method (e.g., MBPT or CC methods). The R12 approach was first implemented within
the MP2 framework.58 Many of the important developments of the R12 technology have also
been made on the MP2 level. It has been shown that the R12 methods are very effective
in reducing basis set errors of MP2 correlation energies. To approach the exact solution of
the electronic Schrödinger equation, it is important to not only reduce the basis set error,
but also incorporate high-level correlation effects. As a result, the R12 approach was later
extended to coupled-cluster R12 (CC-R12) methods59,60 and multi-reference configuration
interaction R12 (MRCI-R12) methods.61,62

18
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3.1 MP2-R12 Method

3.1.1 The Formalism

In the MP2 theory, the Hylleraas functional can be used to obtain the second-order energy:

H(2) = 2〈Ψ(1)|V̂ |Ψ(0)〉+ 〈Ψ(1)|Ĥ(0) − E(0)|Ψ(1)〉 ≥ E(2). (3.2)

The first-order wave function in the Hylleraas functional is comprised of doubly excited
determinants, and can be written as:

Ψ
(1)
MP =

1

4
tijabã

ab
ij |Ψ(0)〉 (3.3)

with ãabij = a†aa
†
bajai in the second quantization form, where the Einstein summation con-

vention is also used (i.e. summation is implied over repeated indices). In the MP2-R12
method,2,63 the first-order wave function includes additional explicitly correlated (geminal)
terms:

Ψ
(1)
MP-R12 = Ψ

(1)
MP +

1

8
tijklR̄

kl
αβã

αβ
ij |Ψ(0)〉, (3.4)

where tijkl are undetermined geminal amplitudes, and α, β, ... are indices representing the
virtual orbitals in the complete basis. The antisymmetrized integral R̄ij

αβ represents the
tensor element of the geminal correlation factor f(r12):

Rij
αβ = 〈αβ|Q̂12f(r12)|ij〉. (3.5)

The projector Q̂12 ensures that the geminal functions are strongly orthogonal to the reference
and the standard doubly excited determinants:

Q̂12 = (1− Ô1)(1− Ô2)− V̂1V̂2, (3.6)

where Ô and V̂ are the projectors on the occupied and virtual orbitals. The resulting MP2-
R12 correlation energy is a sum of the conventional MP2 energy and the R12 correction from
geminal terms:

E
(2)
MP2-R12 = E

(2)
MP2 + E

(2)
R12. (3.7)

The R12 correction is computed as

E
(2)
R12 = −1

4
tijklṼ

kl
ij (3.8)

with

tijkl =
1

2
Ṽ ij
mn

(
B̃−1

(ij)

)mn
kl
, (3.9)
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where Ṽ and B̃ are intermediates of the R12 theory. Ṽ is the geminal tensor of the pertur-
bation, and its element has the following form:

Ṽ kl
ij = V kl

ij +
1

2
Ckl
abt

ab
ij (3.10)

with

V kl
ij =

1

2
ḡαβij R̄

kl
αβ, (3.11)

Ckl
ab =

1

2
(fαa R̄

kl
αb + fαb R̄

kl
aα). (3.12)

Here, fpq represents a Fock matrix element, f qp = 〈p|F̂ |q〉, and ḡpqrs represents an antisym-

metrized Coulomb integral, ḡrspq = 〈pq|r−1
12 |rs〉 − 〈pq|r−1

12 |sr〉. B̃ is the geminal tensor of the

zero-order Hamiltonian. If we use canonical HF orbitals, the tensor element of B̃ can be
expressed as

(B̃(ij))
mn
kl = Bmn

kl − (f ii + f jj )Xmn
kl −

1

2

Cab
klC

mn
ab

faa + f bb − f ii − f
j
j

, (3.13)

where

Bmn
kl = R̄mn

αγ f
α
β R̄

βγ
kl , (3.14)

Xmn
kl =

1

2
R̄mn
αβ R̄

αβ
kl . (3.15)

3.1.2 Evaluation of Many-Electron Integrals in MP2-R12 Theory

Standard Approximation

Similar to other explicitly correlated methods, many-electron integrals appear in the MP2-
R12 method due to the inclusion of explicitly correlated terms. In the intermediates V andX,
up to three-electron integrals are involved, whereas the computation of the B intermediate
requires up to four-electron integrals. To avoid computing these many-electron integrals,
Kutzelnigg and Klopper proposed a set of approximations known as Standard Approximation
(SA).64 In the SA, the Brillouin condition,

f ia = fai = 0, (3.16)

is assumed. Moreover, the generalized Brillouin condition (GBC),

f ia′ = fa
′

i = 0, ∀i, a′, (3.17)

and extended Brillouin condition (EBC),

fab′ = f b
′

a = 0, ∀a, b′, (3.18)
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are also adopted, where a′, b′, ... denote indices for the virtual orbitals in the complete
basis that do not belong to the orbital basis set (OBS), e.g., the Hartree-Fock basis. More
importantly, the resolution of the identity (RI),

1 =
∑
κ

|κ〉〈κ| ≈
∑
p′

|p′〉〈p′| (3.19)

is introduced in the SA, where {κ} is a complete basis set, and {p′} is the RI basis set that
approximates the complete basis set. The use of the RI factorizes many-electron integrals
into products of two-electron integrals. In the following, we will discuss how the RI facilitates
the evaluation of V , X, and B intermediates as well as different strategies to approximate
the RI.

Evaluation of V and X Intermediates

Tensor element V kl
ij can be rewritten as

V kl
ij = 〈ij| 1

r12

Q̂12f12|kl〉

= 〈ij| 1

r12

(
(1− Ô1)(1− Ô2)− V̂1V̂2

)
f12|kl〉

= 〈ij|f12

r12

|kl〉+
∑
mn

〈ij| 1

r12

|mn〉〈mn|f12|kl〉 −
∑
ab

〈ij| 1

r12

|ab〉〈ab|f12|kl〉

− 〈ij| 1

r12

Ô1f12|kl〉 − 〈ij|
1

r12

Ô2f12|kl〉. (3.20)

In this expression, the first three terms are two-electron integrals, which can be evaluated
analytically if Gaussian basis sets are used. The last two terms, however, are three-electron
integrals:

〈ij| 1

r12

Ô1f12|kl〉 =
∑
m

〈ijm| 1

r12

f23|mlk〉, (3.21)

〈ij| 1

r12

Ô2f12|kl〉 =
∑
m

〈ijm| 1

r12

f23|kml〉. (3.22)

Nevertheless, they can be reduced to products of two-electron integrals with the RI approx-
imation. For example,

〈ijm| 1

r12

f23|mlk〉 =
∑
κ

〈ijm| 1

r12

|κ〉〈κ|f23|mlk〉

=
∑
κ

〈ij| 1

r12

|mκ〉〈mκ|f23|mlk〉

≈
∑
p′

〈ij| 1

r12

|mp′〉〈mp′|f23|mlk〉, (3.23)
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where the complete basis set {κ} is approximated by an auxiliary basis set (ABS) {p′}. In
early R12 work, the orbital (i.e. Hartree-Fock) basis set, which is used for the expansion of
the wave function, was employed to approximate the RI.64 As a result, a very large orbital
basis set was required for high accuracy, which limited the applications of those methods to
atoms and small molecules. This situation was improved by Klopper and Samson,65 who
introduced a separate, auxiliary basis set (ABS) to approximate the RI while a relatively
small basis set was used for the wave function. Later, Valeev proposed a modified scheme,
complementary auxiliary basis set (CABS) approach66 that has significantly smaller RI errors
compared to the ABS approach. In the CABS approach, the Q̂12 projector is rewritten as

Q̂12 = 1− Ô1V̂
′

2 − V̂ ′1Ô2 − P̂1P̂2, (3.24)

where V̂ ′ is the projector on the orbitals from the complete basis set that are complementary
(i.e. orthogonal) to the OBS, and P̂ represents the projector on the OBS. The V̂ ′ projector
is approximated with a sum over the CABS:

V̂ ′ ≈
∑
a′

|a′〉〈a′|, (3.25)

where a′ represent orbitals in the CABS space and are constructed by finding the null space
of the overlap matrix between the auxiliary and orbital basis sets using singular value de-
composition.66 Thus, in the CABS approach the final expression for the V intermediate can
be written as

V kl
ij =

(
f12

r12

)kl
ij

− 1

2
r̄klpqḡ

pq
ij − r̄klma′ ḡma

′

ij , (3.26)

where r̄pqrs represent the antisymmetrized integrals of the bare correlation factor, f(r12),
and ḡpqrs are the antisymmetrized Coulomb integrals. Similarly, the intermediate X can be
evaluated with the following expression:

Xkl
ij =

(
f 2

12

)kl
ij
− 1

2
r̄klpqr̄

pq
ij − r̄klma′ r̄ma

′

ij . (3.27)

In addition to the standard Coulomb integrals, Eq. 3.26 and 3.27 also involve two-electron
integrals over f(r12), f(r12)/r12, and (f(r12))2, and they can be evaluated at similar cost to
that of the Coulomb integrals. Compared with the intermediates V and X, the evaluation
of the intermediate C is much simpler since it contains only one- and two-electron integrals,
and its formula in the CABS approach is written as

Ckl
ab =

1

2
(fa

′

a r̄
kl
a′b + fa

′

b r̄
kl
aa′). (3.28)

Evaluation of Intermediate B

In the MP2-R12 theory, B, the geminal tensor element on the Fock operator, is the most
complex intermediate. Its tensor elements can be written as

Bij
kl = 〈ij|f12Q̂12

(
F̂1 + F̂2

)
Q̂12f12|kl〉. (3.29)
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In the early MP2-R12 approach, its derivation utilized the GBC assumption and a tricky
manipulation of commutators:64,65

Bij
kl ≈

1

2
〈ij|f12Q̂12[F̂12, Q̂12f12]|kl〉+

1

2
〈ij|[f12Q̂12, F̂12]Q̂12f12]|kl〉, (3.30)

where F̂12 = F̂1 + F̂2. The commutator [F̂12, Q̂12f12] in the expression leads to integrals over
[F̂12, f12], which can be decomposed into:

[F̂12, f12] = [T̂12, f12]− [K̂12, f12], (3.31)

Here, only the kinetic energy and exchange operators (T̂12 and K̂12) are involved as the
nuclear potential and the Coulomb operator commute with f12. While the integrals involving
the kinetic energy commutator can be evaluated analytically, the integrals over the exchange
commutator require double insertions of the RI, which leads to a quadratic scaling of the
integral evaluation with respect to the size of the RI basis. In the standard approximation
A,63 [f12, K̂12] is neglected, which leads to a much simpler formula and lower computational
cost. In the standard approximation B, the integrals over [f12, K̂12] are computed rigorously,
and thus it is more computational demanding than approximation A. On the other hand,
it has been shown that the MP2-R12/B method converges faster to the basis set limit than
the MP2-R12/A method (O[(L+ 1)−7] vs. O[(L+ 1)−5]), and the latter overestimates MP2
correlation energies.63,65

Later, Noga et al.67 formulated a different approximation for the B intermediate, which is
denoted as the standard approximation C. Approximation C is similar to approximation B in
that no priori approximations other than RI are made. The only term that is not evaluated
directly via an RI insertion is 〈ij|f12F̂12f12|kl〉, but it can be reformulated with commutators
as

〈ij|f12F̂12f12|kl〉 = 〈ij|f12

(
F̂12 + K̂12

)
f12|kl〉 − 〈ij|f12K̂12f12|kl〉

=
1

2
〈ij|[f12, [T̂12, f12]]|kl〉+

1

2
〈ij|[F̂12 + K̂12, f

2
12]+|kl〉

− 〈ij|f12K̂12f12|kl〉, (3.32)

where [F̂12 + K̂12, f
2
12]+ is an anticommutator between F̂12 + K̂12 and f 2

12. In the expression
above, the first term can be evaluated analytically, and the second and third terms can
be evaluated with the RI approximation. The final expression for the B intermediate in
approximation C can be written as

Bkl
ij =

1

2

(
[f12[T̂12, f12]]

)kl
ij

+
1

2

((
f 2

12

)p′l
ij

(F +K)kp′ +
(
f 2

12

)kp′
ij

(F +K)p
′

l +
(
f 2

12

)p′j
kl

(F +K)ip′ +
(
f 2

12

)ip′
kl

(F +K)jp′

)
− r̄klr′p′K

p′

q′ r̄
r′q′

ij − r̄klp′mF
p′

q′ r̄
q′m
ij − r̄klpaF p

q r̄
qa
ij − r̄kla′mFm

n r̄
a′n
ij

−
(
r̄kla′mF

m
p′ r̄

a′p′

ij + r̄klpaF
p
a′ r̄

a′a
ij + r̄ija′mF

m
p′ r̄

a′p′

kl + r̄ijpaF
p
a′ r̄

a′a
kl

)
, (3.33)
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where p′, q′, ... are indices for orbitals in the ABS. Similar to V and X, the evaluation
of B also involves non-standard two-electron integrals, which include another new type of
integrals over [f12[T̂12, f12]]. Since there is no need to evaluate the expensive integrals over
[f12, T̂12], approximation C requires fewer types of two-electron integrals than those with
approximation A and B, and has been shown to perform similarly to approximation B.2,63

Thus, approximation C represents a simpler way to evaluate the B intermediate than the
earlier approaches.

Numerical Quadrature

An alternative approach used to evaluate many-electron integrals is the numerical quadra-
ture. This idea was used by Boys and Handy in their transcorrelated method,40 and,
more recently, employed by Ten-no to compute the many-electron integrals in the MP2-
F12 method.68 The two-electron Coulomb integrals, for example, can be evaluated as sums
of two- and three-center objects over grid points:

〈pq| 1

r12

|rs〉 =
∑
g

w(rg)φp(rg)φr(rg)〈q|
1

r1g

|s〉, (3.34)

where g indexes the grid points, and w(rg) is the quadrature weight at the point rg. There-
fore, the transformation of these integrals scales as O(N2OG) as opposed to O(N4O) in
the regular MP2 method, where N is the number of orbitals in the OBS, O is the number
of occupied orbitals, and G is the numbers of grid points. If G � N2, the scaling is re-
duced, and thus it is advantageous to use the numerical quadrature. For an accuracy on the
order of µEh, it has been shown that 1000 to 30,000 grid points per atom are required.68

With the numerical quadrature, other two-electron integrals in the MP2-F12 theory, such as
〈pq|T̂1f(r12)|rs〉, can be evaluated in a similar manner.

More importantly, the three-electron integrals in the MP2-F12 theory can be accurately
calculated using the numerical quadrature with a reduced scaling. For example, the three-
electron integral in Eq. 3.21 can be evaluated directly as

〈ij| 1

r12

Ô1f12|kl〉 =
∑
mg

w(rg)φj(rg)φl(rg)〈i|
1

r1g

|m〉〈m|f1g|k〉. (3.35)

Thus, the three-electron integral is decomposed into three-center, one-electron integrals. The
computational cost of such evaluation is linear with respect to the number of grid points,
whereas the cost is proportional to OP ′ when the RI approximation is used (see Eq. 3.23),
where P ′ is the number of orbitals in the RI basis. Therefore, the numerical quadrature
approach might be more advantageous as the system size increases.69,70 For more complicated
many-electron integrals (e.g., integrals over the exchange operator in the intermediate B),
however, a hybrid QD/RI approach is required.69
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3.1.3 Correlation Factors

In the early days of R12 methods, the linear r12 function was used as the correlation factor:
f(r12) = r12. The explicitly correlated terms that depend linearly on r12 give proper descrip-
tion for the wave function at small inter-electronic distances, and thus significantly improve
the convergence of correlation energies. However, the linear r12 factor yields unphysical
long-range correlation behavior: the dynamical correlation between electrons should decay,
not grow, at long distances. As a result, the standard expansion of orbital products has to
compensate for this unphysical behavior, which means that larger-than-expected basis sets
are required in calculations with the linear r12 factor.
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Figure 3.1: Valence MP2 correlation energies (in mEh) of the Ne atom calculated with MP2-
F12(R12) methods using various correlation factors.3 The optimal ζ varies for different basis
sets (see Ref. 3 for more details). The dashed line denotes the basis set limit.

This problem can be solved by using non-linear short-range correlation factors, such as the
Slater-type geminal exp(−ζr12), which was first proposed by Ten-no,71 or Gaussian-type
geminals, the use of which was investigated by Persson and Taylor in the R12-type frame-
work.72 The Slater-type geminal gives the correct asymptotes for both r12 → 0 and r12 →∞,
and thus significantly improves the performance of MP2-R12∗ calculations with small ba-
sis sets.73 Correlation factors in various other forms, such as r12exp(−ζr12), erfc(ζr12), and

∗Modern applications of R12 methods use the moniker F12 to distinguish from the older, linear r12 for-
mulation. It should be noted, however, that there are no other differences between R12 and F12 formalisms.
Hence, we will use R12 and F12 interchangeably in this thesis.
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Table 3.1: Average unsigned basis set errors (kJ/mol) of HF and various correlation contri-
butions to the reaction energies of the HJO12 set.a

Basis HF HF(2)S
b MP2 MP2-F12 CCSD CCSD(2)F12 (T)

aug-cc-pVDZ 13.6 1.2 12.0 2.0 13.1 3.2 1.2
aug-cc-pVTZ 1.1 0.6 3.2 0.8 2.9 0.6 0.4
aug-cc-pVQZ 0.6 0.5 1.3 0.8 1.0 0.6 0.3

aThe HJO12 set includes 12 isogyric reactions, which range from nearly thermoneutral to highly exothermic

and involve breaking and forming an assortment of chemical bonds (see Table 4.2). The complete basis

set (CBS) limits for HF energies were the cc-pV6Z HF values, the CBS limits for valence MP2 correlation

energies were obtained by subtracting the CBS HF energies and the core-correlation energies from the CBS

MP2 energies (obtained by the X−3 extrapolation33 using the cc-pCV5Z and cc-pCV6Z values), and the

details of the CBS CCSD and (T) correlation energies can be found in Section 4.3.2. bHF(2)S refers to the

Hartree-Fock energies with the CABS singles correction.

r12erfc(ζr12),3 have also been investigated by Tew and Klopper,3 who compared the per-
formance of MP2-R12 calculations with various correlation factors. Figure 3.1 presents the
valence correlation energies of the Ne atom from their calculations, where approximation B
was employed, and the correlation-consistent basis sets, aug-cc-pVXZ (X = D, T, Q, 5, 6),
were used. They found that the non-linear correlation functions lead to significantly im-
proved results compared to the linear correlation factor: the calculations with them require
a basis set of one cardinal number lower than the calculations with r12 for an equivalent
accuracy. Since the exponent ζ in exp(−ζr12) is relatively insensitive to the results, they
also concluded that the Slater-type geminal is the best choice.3 In practice, the Slater-type
geminal is usually approximated with a linear combination of Gaussian-type geminals:

exp(−ζr12) ≈
N∑
i

ci exp(−αir2
12), (3.36)

whereN is the number of Gaussians. The effect of this approximation on energies is negligible
whereas the integrals over the linear combination of Gaussians are easier to evaluate. MP2-
F12 methods have been applied to calculate not only energies of closed-shell systems but
also energies of open-shell systems74–76 and molecular properties.12,77 It has been shown in
many benchmark calculations73,78,79 that MP2-F12 calculations with triple-ζ basis sets yield
quintuple-ζ or even better accuracy.

3.1.4 CABS Singles Correction

F12 corrections are very effective in reducing basis set errors of correlation energies, and
thus basis set errors of HF energies often become the dominant source of the residual errors



Jinmei Zhang Chapter 3. Modern R12/F12 Methods 27

(see Table 3.1 as example). One solution to this problem is to use a large basis set for the
computation of the HF energy. Instead of introducing another basis set, the HF basis set error
can be greatly reduced perturbatively via standard single excitations into the complementary
auxiliary (CA) orbital space. This approach is called “CABS singles,” and has been proven
to be very effective at reducing HF basis errors.76,80,81

In this perturbative approach, the HF determinant is defined as the zeroth-order wave func-
tion, and the Hamiltonian can be expressed as:

Ĥ = Ĥ(0) + Ĥ(1) =

 F i
j 0 0

0 F a
b F a′

b

0 F a
b′ F a′

b′

+

 0 F a
i F a′

i

F j
a 0 0

F j
b′ 0 0

 , (3.37)

where a′ and b′ present orbitals from the CA space. Following the standard perturbation
procedure, a second-order energy correction to the HF energy (usually labeled as E(2)S) can
be obtained:

E(2)S = EHF + F a
i t
i
a + F a′

i t
i
a′ , (3.38)

where tia and tia′ are “CABS singles” amplitudes. This energy correction is not coupled with
the MP2 correlation energy. Thus the CABS singles correction can be easily incorporated
into MP2-F12 methods. In MP2-F12 calculations, the Fock matrix elements, F a

b′ and F a′

b′ ,
are already available. Therefore, the computational cost for the CABS singles correction is
negligible in a MP2-F12 calculation.

In Table 3.1, we list the basis set errors of the HF and various correlation contributions to
the electronic reaction energies of the HJO12 set,1 where the aug-cc-pVXZ (X = D, T, Q)
basis sets were used. It is clear that after we include F12 corrections to correlation energies
(such as in MP2-F12 and CCSD(2)F12), the HF basis set errors are the largest source of error
especially at the double-ζ level. Nevertheless, the CABS singles correction reduces the HF
basis set error to 1.2 kJ/mol at the double-ζ level, and thus it becomes comparable to basis
set errors of MP2-F12 correlation energies. The CABS singles correction can also be easily
incorporated in the CC-F12 calculations, which ensures that the HF basis set error is not the
limiting factor in the calculations. In Table 3.1, we also include the basis set errors of CCSD
or (T) correlation energies, and we found that the accuracy of HF(2)S is also comparable to
that of CCSD(2)F12 or (T) correlation contributions.

3.1.5 Basis sets for F12 Calculations

Despite the tremendous progress of the F12 methods, there are few studies on the perfor-
mance of various basis sets in F12 calculations. It has been shown that diffuse functions
are very important in the F12 calculations,3 as the electron correlation at the short inter-
electronic distance can be well described by the geminal functions. Thus, the augmented
correlation-consistent basis sets, aug-cc-p(C)VXZ,18–20 were typically preferred for F12 cal-
culations.
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Recently, Peterson and co-workers introduced a new set of correlation-consistent basis sets,
cc-p(C)VXZ-F12,15,82,83 which were optimized specifically for F12 calculations. In their
scheme for the cc-pVXZ-F12 basis sets, the contracted HF s and p functions along with the
diffuse s and p functions were taken from the aug-cc-pV(X+1)Z basis sets. Similarly, the
s-type correlating functions in the cc-pVXZ-F12 basis sets were simply taken from the cc-
pV(X+1)Z basis sets, whereas the p-type correlating functions included the two p functions
from the cc-pV(X+1)Z basis sets and an additional tight p function. In the new basis sets,
the correlating functions with higher angular momentums along with some p-type correlat-
ing functions were optimized in the molecular calculations with the MP2-F12 method. The
cc-pVXZ-F12 (X = D, T, Q) basis sets were first developed for the atoms H, He, B-Ne, and
Al-Ar using a set of closed-shell systems for the basis set optimization. In the process of
their optimization, the Slater-type geminal was used as the correlation factor, and thus the
optimal geminal exponent was also recommended for each basis set. Later, the optimization
was extended to the cc-pVXZ-F12 (X = D, T, Q) basis sets for the alkali and alkaline earth
metals: Li, Be, Na, and Mg. Moreover, the core-valence basis sets, cc-pCVXZ-F12 (X =
D, T, Q), for the same atoms have also been developed. In these core-valence basis sets,
additional functions that account for both core-core and core-valence correlations were in-
cluded, and they were optimized for the difference between all-electron and valence MP2-F12
correlation energies. Futhermore, they have also reported new optimized auxiliary (OPTRI)
basis sets16,84 for the CABS-based F12 calculations with both the cc-p(C)VXZ-F12 and aug-
cc-p(C)VXZ basis sets. These OPTRI basis sets have been shown to have small RI errors
and improved numerical stability.

It has been reported that the cc-p(C)VXZ-F12 basis sets give better results than the corre-
sponding aug-cc-p(C)VXZ basis sets in MP2-F12 calculations.85 However, these calculations
are limited to a few properties (e.g., atomization energies). In fact, our work has shown that
the performance of these two basis set series vary for CCSD(T)F12 calculations on different
electronic energy differences (see Chapter 4 for details). Thus, more comprehensive tests of
the cc-p(C)VXZ-F12 basis sets are needed.

3.2 CC-R12/F12 Methods

3.2.1 The Formalism

To approach the exact solution of the electronic Schrödinger equation, it is important to
improve not only the basis set error with R12 methods but also the accuracy of the underlying
method by incorporating high-level correlation effects. The coupled-cluster (CC) theory
provides an effective hierarchy of approximations which can, in many cases, rapidly lead to
the exact solution. Although the early R12 techniques were developed within the MP2-R12
framework, it is straightforward to apply them to the CC theory. Noga et al. developed
CC-R12 methods by extending the standard CC cluster operator (T̂ ) with an additional R12
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(geminal) operator (R̂).59,60 The wave function ansatz of CC-R12 methods is defined as

|Ψ〉 = eŜ|Φ0〉 (3.39)

with
Ŝ = T̂ + R̂. (3.40)

The additional R12 operator can be written as

R̂ =
1

4
tijklR̂

kl
ij (3.41)

with

R̂kl
ij =

1

2
R̄kl
αβã

αβ
ij , (3.42)

where R̂kl
ij can be viewed as a geminal double excitation operator, and R̄kl

αβ are antisym-
metrized integrals over the geminal correlation factor. This geminal operator produces two-
electron excitations into the complete virtual space, {α}. The resulting double excitations
cannot be generated by the standard T̂2 operator, since R̄kl

αβ are zero when both α and β are
in the orbital basis:

R̄kl
αβ =

{
0 if α ∈ {φa} and β ∈ {φb}
r̄klαβ otherwise.

(3.43)

With the new wave function ansatz, the Schrödinger equation of CC-R12 methods is written
as:

ĤeŜ|Φ0〉 = EeŜ|Φ0〉. (3.44)

By multiplying e−Ŝ along with the reference or excited determinants on its left side, one can
obtain the energy and amplitude equations:

E = 〈Φ0|e−ŜĤeŜ|Φ0〉, (3.45)

0 = 〈Φ0|
(
ãab...ij...

)†
e−ŜĤeŜ|Φ0〉, (3.46)

0 = 〈Φ0|
(
R̂kl
ij

)†
e−ŜĤeŜ|Φ0〉. (3.47)

In the coupled-cluster singles and doubles R12 (CCSD-R12) model, the energy equation can
be expressed as

ECCSD-R12 = 〈Φ0|H̄CCSD + [H̄CCSD, R̂]|Φ0〉
= 〈Φ0|H̄CCSD|Φ0〉+ 〈Φ0|[Ŵ , R̂]|Φ0〉

= ECCSD +
1

4
tijklV̄

ab
ij , (3.48)

where H̄CCSD is the CCSD similarity-transformed Hamiltonian (H̄CCSD = e−T̂1−T̂2ĤeT̂1+T̂2),
F̂ is the Fock operator, and Ŵ is the fluctuation operator defined as Ŵ ≡ Ĥ − F̂ . With
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optimized CCSD and geminal amplitudes, the CCSD-R12 energy can be easily computed.
These amplitudes can be obtained by solving the following equations:

0 = 〈Φa
i |H̄CCSD + [H̄CCSD, R̂]|Φ0〉, (3.49)

0 = 〈Φab
ij |H̄CCSD + [H̄CCSD, R̂] +

1

2
[[H̄CCSD, R̂], R̂]|Φ0〉, (3.50)

0 = 〈Φkl
ij |H̄CCSD + [H̄CCSD, R̂] +

1

2
[[H̄CCSD, R̂], R̂]|Φ0〉, (3.51)

where 〈Φkl
ij | ≡ 〈Φ0|

(
R̂kl
ij

)†
. However, the geminal amplitude equation (Eq. 3.51) introduces

an additional computational step, which scales as O(O3V ′3) (O is the number of occupied
orbitals and V ′ is the number of CABS orbitals). Moreover, two new F12 intermediates,

P ij
kl = R̄αβ

kl ḡ
γδ
αβR̄

ij
γδ, (3.52)

Zij;p
kl;m = R̄αβ

kl ḡ
γp
αmR̄

ij
γβ, (3.53)

are required in the evaluation,59 where ij; p and kl;m indicate that Zij;p
kl;m is antisymmetric

with respect to the permutation of i and j as well as k and l. Unlike all other terms, these
two intermediates have to be evaluated analytically since direct insertions of the RI result in
integrals that converge slowly with respect to the size of the CABS. Thus, their evaluation
leads to a significant increase in the computational cost.

Compared to the standard CC methods, the implementation of the CC-R12 methods is much
more complicated due to the R12 terms. Thus, the early implementation of CC-R12 methods
utilized the SA, which significantly simplified the equations and software implementations.
A large basis set, however, is required to approximate the RI. Therefore, they are mostly
used for highly accurate computations of atoms and small molecules (up to five atoms).86,87

Full implementations of CC-R12 methods with the CABS approach have become possible
with automated equation derivation and implementation tools. Shiozaki et al.88,89 reported
the first implementation of the CCSD-R12 method using the symbolic algebra code SMITH,
and later they extended the implementation to higher-rank CC-R12 methods,90 such as the
CCSDT-R12 and CCSDTQ-R12 methods. A similar implementation of the full CCSD-R12
method has also been reported by Köhn et al.91 with the GECCO program.

3.2.2 The SP Approach

Instead of solving geminal amplitude equations, an alternative is to use fixed geminal ampli-
tudes as proposed by Ten-no (called the SP approach).68,71,92 In this approach, the geminal
amplitudes are determined by the s-wave (singlet) and p-wave (triplet) cusp conditions, as
these conditions describe the behavior of the exact wave function at small inter-electronic
distances (see Eq. 1.33 and 1.35). Therefore, the R̂ operator in the SP approach can be
written as93

R̂(SP) =
1

2
R̄ij
αβã

αβ
ij (3.54)
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with

R̄ij
αβ = 〈αβ|Q̂12

(1

2
P̂0 +

1

4
P̂1

)
f12|ij〉, (3.55)

Here, P̂0 and P̂1 are the singlet and triplet spin projectors:

P̂0 = |αβ〉0〈αβ|0, (3.56)

P̂1 = |ββ〉〈ββ|+ |αβ〉1〈αβ|1 + |αα〉〈αα|, (3.57)

where

|αβ〉0 =
1√
2
{α(1)β(2)− β(1)α(2)}, (3.58)

|αβ〉1 =
1√
2
{α(1)β(2) + β(1)α(2)}. (3.59)

These projectors are used to ensure the appropriate selection of the coefficient for the singlet
and triplet pairs.† In addition, the contributions from F12 terms in the SP approach can be
pre-evaluated due to the fixed amplitudes, and thus further reduce its computational cost.

The use of fixed geminal amplitudes introduces errors into the energy. Therefore, the La-
grange functional is usually used to compute the energy in the SP approach, as the error in
the energy depends quadratically on the error in the geminal amplitudes. For example, the
CCSD-F12 Lagrangian can be written as

LCCSD-F12 = LCCSD + LF12, (3.60)

LCCSD = E0 + 〈Φ0|H̄CCSD|Φ0〉+ 〈Φ0|Λ̂1H̄CCSD|Φ0〉+ 〈Φ0|Λ̂2H̄CCSD|Φ0〉, (3.61)

LF12 = 〈Φ0|[ĤCCSD, R̂]|Φ0〉+ 〈Φ0|Λ̂1[H̄CCSD, R̂]|Φ0〉

+ 〈Φ0|Λ̂2

(
[H̄, R̂] +

1

2
[[H̄CCSD, R̂], R̂]

)
|Φ0〉

+ 〈Φ0|Λ̂′2
(
[H̄CCSD, R̂] +

1

2
[[H̄CCSD, R̂], R̂]

)
|Φ0〉, (3.62)

where Λ̂ operators are defined as

Λ̂1 = λai ã
i
a, (3.63)

Λ̂2 =
1

(2!)2
λabij ã

ij
ab, (3.64)

Λ̂′2 =
1

(2!)2
λklij (R̂

kl
ij )
†. (3.65)

†It should be noted that this requires f12 to behave linearly at short r12, which means that for the
exponential factor we must set f12 = (1 − exp(−ζr12))/ − ζ, so that its Taylor expansion at small r12 is
f12 ≈ r12 +O(r212).
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By making the Lagrangian stationary with respect to the Lagrangian multipliers (λ), the
optimized amplitudes can be obtained. In the SP approach, R̂ is set to R̂(SP), and Λ′2 is
equal to [R̂(SP)]†.4 As expected, the reduced flexibility due to the fixed geminal amplitudes
results in a loss of accuracy in total energies computed with the SP approach. The accuracy
of relative energies, however, is often comparable to that of CC-R12 methods with opti-
mized geminal amplitudes. Moreover, the SP approach is numerically more stable, and is
also free of the geminal basis set superposition error, which leads to improved predictions
for weak interactions.92 As a result, the SP approach has been adopted in most practical
applications.2,10

3.2.3 Approximate CC-R12/F12 Methods

To extend applications to larger systems, various simplified CC-R12/F12 models, which
demand less computational effort while maintaining similar accuracy as the CC-R12/F12
methods, have been developed over the years. These methods include CC(R12/F12),94

CC(F12*),95 CC-F12x (x = a, b),80,96 and CC(2)F12.97,98 Their performance has been closely
examined in the work of Hättig et al.95 In Table 3.2, we present parts of their data that in-
clude the mean and maximum basis set errors of reaction and atomization energies calculated
with various approximate CCSD-F12 models. While the performance of these approximate
CCSD-F12 methods is similar in general, there are some small variations for calculations
of different properties. In the following, we will present more details of these models, and
further discuss their differences.

CC(F12) Methods

The CCSD(R12) method was first introduced by Klopper and co-workers,94 and they first
implemented the method in the DALTON program.99 Today, the implementation of the
CC(R12/F12) methods can also be found in many other scientific software packages like
TURBOMOLE100 and MPQC101 packages. In the CCSD(R12) method, only the terms
linear in geminal amplitudes are retained in the amplitude equations (Eq. 3.50 and Eq.
3.51). Assuming the orthogonality between geminal and conventional double excitations is
satisfied, the nonlinear terms are very small. Furthermore, the [H̄, R̂] term is reduced to
[F̂ , R̂] in the geminal amplitude equation (Eq. 3.51), which eliminates the calculation of
small terms that are computationally expensive and numerically inaccurate. As a result, the
double excitation and geminal amplitude equations is transformed to:

0 = 〈Φab
ij |H̄CCSD + [H̄CCSD, R̂]|Φ0〉, (3.66)

0 = 〈Φkl
ij |H̄CCSD + [F̂ , R̂]|Φ0〉 (3.67)

in the CCSD(R12) method, and the corresponding correlation energy is computed with

ECCSD(R12) = 〈Φ0|H̄CCSD + [H̄CCSD, R̂]|Φ0〉. (3.68)
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Table 3.2: The mean and maximum basis set errors (kJ/mol per valence electron) of various
CCSD correlation contributions to reaction energies and atomization energies.4,a

Method Basis
Reaction energy Atomization energy

Mean Max Mean Max
CCSD(F12) cc-pVDZ-F12 −0.10 −0.32 −0.61 −1.05

cc-pVTZ-F12 −0.01 −0.06 −0.08 −0.33
cc-pVQZ-F12 0.00 0.01 0.04 −0.13

CCSD(F12*) cc-pVDZ-F12 −0.10 −0.32 −0.60 −1.04
cc-pVTZ-F12 −0.01 −0.06 −0.08 −0.33
cc-pVQZ-F12 0.00 0.01 0.04 −0.13

CCSD[F12] cc-pVDZ-F12 −0.09 −0.30 −0.32 −0.76
cc-pVTZ-F12 −0.01 −0.05 0.05 −0.26
cc-pVQZ-F12 0.00 −0.01 0.10 0.17

CCSD-F12a cc-pVDZ-F12 −0.14 −0.50 −0.37 −0.70
cc-pVTZ-F12 −0.02 −0.11 0.19 0.58
cc-pVQZ-F12 0.00 0.02 0.27 0.45

CCSD-F12b cc-pVDZ-F12 −0.16 −0.53 −0.85 −1.54
cc-pVTZ-F12 −0.03 −0.12 −0.16 −0.40
cc-pVQZ-F12 0.00 −0.03 0.05 0.14

CCSD(2)F12 cc-pVDZ-F12 −0.13 −0.42 −0.72 −1.48
cc-pVTZ-F12 −0.02 −0.08 −0.13 −0.53
cc-pVQZ-F12 0.00 0.01 0.04 −0.19

aThe test set for atomization energies include 30 small closed-shell molecules that contains H, C, N, O, and F

elements, and the decomposition of these 25 molecules into H2, CO, CO2, N2, and F2 comprises the reaction

test set. In the calculations, the SP approach is used.
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If the SP approach is used, however, the energy is evaluated using the Lagrangian instead
of Eq. 3.68.

Later, the CCSD(R12) approach has also been extended to include F12 geminal functions
as the correlation factor,102,103 which decays exponentially with the inter-electronic distance,
and such method is referred to as the CCSD(F12) method. Within the SP approximation,
the most time consuming process during a CCSD(F12) calculation is the iterative computa-
tion of the CCSD amplitudes. In these iterations, most terms contributed from F12 geminals
are less expensive than the conventional terms. On the other hand, CCSD(F12) calculations
produce correlation energies of quintuple-ζ quality with triple-ζ basis sets.102,103 Thus, the
CCSD(F12) method represents an excellent approximation to the CCSD-F12 method: cor-
relation energies close to the CCSD basis set limit can be obtained with a relatively low
computational cost. The CCSD(T)(R12)104 and CCSD(T)(F12),102,103 methods have also
been developed, where the triples corrections are computed in the same way as those in the
standard CCSD(T) theory. With these methods, chemical accuracy in energy differences can
be obtained at a reasonable cost.

Recently, simplified CCSD(F12) methods, CCSD(F12*) and CCSD[F12], have also been
reported by Hättig and co-workers.95 Within the SP approach, the additional computational
cost in these methods is further reduced, and is now comparable to that of CCSD-F12b and
CCSD(2)F12 methods (see the following sections for details). On the other hand, it has been
shown that the simplifications introduced in these two methods result in negligible errors
in energies.4 In Figure 3.2, for example, the CCSD(F12*) and CCSD[F12] methods show
equivalent accuracy to the CCSD(F12) method for the calculations of reaction energies and
atomization energies within the SP approach.

CC-F12x Methods

The CC-F12x (x = a, b) methods were developed by Werner and co-workers,80,96 who im-
plemented these methods in the MOLPRO package.105 In the CC-F12x methods, the SP
ansatz is always used. As a result, it is no longer necessary to solve the geminal amplitude
equations, and thus the number of equations is the same as that in standard CC methods.
Furthermore, the double excitation amplitude equation is reduced to

0 = 〈Φab
ij |H̄CCSD + [Ĥ, R̂]|Φ0〉, (3.69)

where the [[Ŵ , T̂2], R̂] term included in Eq. 3.66 is neglected. In addition, the contributions
from the CABS orbitals are also neglected except those present in the MP2-F12 theory. For
the two CC-F12x variants, the difference lies in their energy expressions:

ECCSD-F12a = ECCSD + 〈Φ0|Λ̂′2
(
Ŵ + [F̂ , T̂2] + [F̂ , R̂]

)
|Φ0〉, (3.70)

ECCSD-F12b = ECCSD + 〈Φ0|Λ̂′2
(
Ŵ + [Ĥ, T̂2] + [F̂ , R̂]

)
|Φ0〉, (3.71)
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where an additional coupling term, [Ŵ , T̂2], is included in the CCSD-F12b energy expression.
Due to the evaluation of the additional F12 terms in the CC amplitude equations, each CC
iteration in the CCSD-F12x methods takes a small amount of extra time. However, the
predominant additional cost in CCSD-F12x calculations is an initial MP2-F12 calculation,
which scales as O(N5) (N is a measure of the molecular size). Compared to the CCSD
method, which scales as O(N6), this additional computational cost is relatively small. In
CCSD(T)-F12x calculations, it becomes negligible for larger molecules, as the scaling of the
CCSD(T) method is O(N7).10

CC-F12x methods can be considered approximations to the CC(F12) approach, which retain
only the dominant F12 contributions in the amplitude equations. While they are slightly less
accurate than the CC(F12) models, their computational cost is lower. It has been shown that
the CCSD-F12a method slightly overestimates the CCSD-F12 correlation energies whereas
the CCSD-F12b variant slightly underestimates them. However, relative energies computed
with these two methods have similar accuracy.106 For example, the CCSD-F12a and CCSD-
F12b models show comparable accuracy for calculations on reaction energies (see Table 3.2).
For calculations on atomization energies, the CCSD-F12a model gives better results than
the CCSD-F12b variant with the cc-pVDZ-F12 basis set. With larger basis sets, however,
its yields slightly worse results than CCSD-F12b.

CC(2)F12 Methods

The CC(2)F12 models were first proposed by Valeev and implemented within the MPQC
package,101 and now can also be found in other packages, such as MOLPRO.105 In the
CC(2)F12 methods,97,98 the geminal contributions are included with the perturbation theory.
This approach is analogous to the way in which the connected triples in the CCSD(T) method
are treated.107 In the CCSD(2)F12 model, the Lagrangian is rewritten in a matrix form as

LCCSD-F12 = L†H̄R, (3.72)

where L and R are the left- and right-hand eigenvectors of H̄, and H̄ is the matrix repre-
sentation of the similarity-transformed CCSD Hamiltonian (H̄ ≡ e(−T̂1−T̂2)Ĥe(T̂1+T̂2)). This
Hamiltonian matrix can be written as

H̄ =

(
H̄PP H̄PQ

H̄QP H̄QQ

)
, (3.73)

where P is the reference space including the reference determinant (0), singly substituted
determinants (S), and doubly substituted determinants (D); and Q represents an external
space comprised of explicitly correlated geminal substitutions (Γ). With a Löwdin-type
perturbation expansion,108 the matrices of the zeroth- and first-order Hamiltonians can be
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obtained by partitioning the similarity-transformed Hamiltonian matrix:

H̄(0) =

(
H̄PP 0

0 H̄
(0)
PP

)
, (3.74)

H̄(1) =

(
0 H̄PQ

H̄QP H̄
(1)
QQ

)
, (3.75)

where the zeroth-order Hamiltonian is the standard Fock operator (F̂ ), and the first-order
Hamiltonian is the similarity-transformed CCSD Hamiltonian (H̄). Thus, the left- and
right-hand zeroth-order eigenvectors in the CCSD(2)F12 method are the standard left- and
right-hand ground-state CCSD eigenvectors (L and R),1

L(0) =

(
L
0

)
, (3.76)

R(0) =

(
R
0

)
. (3.77)

and the zeroth-order energy is the ground-state CCSD energy. The geminal functions con-
stitute the first-order wave function, and thus lead to a second-order energy correction.

In the CCSD(2)F12 method, CC amplitude equations are not modified. As a result, the
computational cost of the iterations for CCSD amplitudes in this method is identical to that
in the standard CCSD method. The additional computational cost comes from the evaluation
of F12 intermediates and the final energy. Valeev employed the screening approximations
(ScrA) in the CCSD(2)F12 model to simplify the formula,97 and those approximations lead
to a second-order Hylleraas-type functional from F12 contributions:

L(2)F12
=

1

8
towij (B̃(ij))

kl
owt

ij
kl +

1

2
V̄ kl
ij t

ij
kl. (3.78)

Compared with the MP2-F12 Lagrangian, the difference in L(2)F12
lies in the V intermediate.

The tensor element of the V intermediate here can be expressed as

V̄ kl
ij ≡ V kl

ij +
1

2

(
V kl
ab + Ckl

ab

)
tabij + V kl

aj t
a
i + V kl

ia t
a
j , (3.79)

where not only the first term, which contributes to the V intermediate in the MP2-F12
theory, is included, but also terms that involve the CCSD amplitudes, tai and tabij .

The error introduced by the approximations in the CCSD(2)F12 model are very small, and
are negligible when compared to the residual basis set error of the CCSD-F12 method. It
has been shown that the CCSD(2)F12 method is a very good approximation to the CCSD-
F12 method.2,10 The CCSD(2)F12 method is slightly worse than the CCSD(F12) models, but
generally more accurate than the CCSD-F12x methods (as shown in Figure 3.2). In addition,
Valeev et al. have also extended the CC(2)F12 approach to the CCSD(T) level, which includes
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the effect from connected three-electron correlations.109 In their CCSD(T)F12 method, the
geminal and triples effects are completely decoupled. Moreover, the SP approximation is
typically employed in their calculations.93,98 Thus, the CCSD(T)F12 energy can be simply
computed as

ECCSD(T)F12
= ECCSD + E(T) + E(2)S + E(2)F12

, (3.80)

which is the sum of the standard CCSD(T) energy, the usual “CABS singles” correction,
and the F12 correction.

3.3 Recent Developments

3.3.1 Multi-Reference F12 Methods

Until recently, most of the F12 methods were based on the assumption that a single reference
is sufficient to approximate the wave function. However, there are systems where the multi-
reference (MR) treatment is necessary for the proper description of the system. For example,
the calculations of excited states and bond breakings require the multi-reference methods.
Gdanitz61,62 was the first to develop the MR configuration interaction R12 method, where
the conventional MRCI wave function is augmented with explicitly correlated terms:

Ψ = ΨMRCI +
∑
I

Q̂Itijkl(I)rklκλa
κλ
ij |ΨI〉 (3.81)

where ΨI represent the reference determinants, and the Q̂I projector, which depends on
the Ith reference determinant, ensures the orthogonality between the explicitly correlated
functions and the conventional MRCI wave function. It should be noted that the geminal
amplitudes also depend on the reference determinants, which results in a large number
of parameters to be optimized. He also developed the explicitly correlated MR averaged
coupled-pair functional, which has been used to study various properties (e.g., potential
energy surfaces and excited states) of small systems.

More recently, Ten-no75 proposed an R12 version of the MR-MP2 method, where the explic-
itly correlated terms are included in an internally contracted manner. In his approach, the
first-order wave function is written as

Ψ(1) = Ψ
(1)
MRMP + Q̂R̂12

∑
I

tI |ΨI〉 (3.82)

with

R̂12 =
1

2
tijklr

kl
κλa

κλ
ij , (3.83)

where explicitly correlated functions are generated by R̂12 when acting on the reference
determinants. Ten-no’s approach not only leads to a more compact formula, but also reduces
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the number of geminal amplitudes to be determined as they do not directly depend on
reference determinants. In Ten-no’s work, the SP approach was also adopted, which further
reduced the computational cost of the method and improved its numerical stability. In
addition, Torheyden and Valeev110 have presented a general second-order R12 correction,
[2]R12, which can be applied to any reference state as long as the two-electron reduced
density matrix is available. The F12 versions of the CASPT2 and MRCI methods have also
been presented by Shiozaki and Werner.111,112 For more details of these methods, we refer
interested readers to the review paper from Valeev et al.2

3.3.2 Monte Carlo F12 Method

Recently, Hirata et al.113 have implemented a Monte Carlo explicitly correlated MP2 (MC-
MP2-F12) method, where a Monte Carlo (MC) integration was used to compute the sum of
many-electron integrals. In general, the integral I of a high-dimensional function, f(x), can
be approximated as the sum of the quotient f(xn)/w(xn),

I =

∫∫∫
dxf(x)

≈ 1

N

N∑
n=1

f(xn)

w(xn)
(3.84)

where xn are random sampling points distributed according to the weight function, w(x),
and N is the number of sampling points.114 In a similar manner, the F12 energy corrections
of the MP2-F12 method with Ten-no’s fixed amplitudes71 (see Section 3.2.2 for more details),

EF12 =
5

8

occ.∑
i,j

〈ij|r−1
12 Q̂12f12|ij〉 −

1

8

occ.∑
i,j

〈ij|r−1
12 Q̂12f12|ji〉, (3.85)

can be evaluated with the MC integration. For example, the F12 energy contribution from
the three-electron integrals can be written as

E3e = −5

4

occ.∑
i,j,k

〈ijk|f23

r12

|kji〉+
1

4

occ.∑
i,j,k

〈ijk|f23

r12

|kij〉. (3.86)

With the MC integration, it can be evaluated as

E3e =

∫∫∫
dr1dr2dr3 F3(r1, r2, r3)

≈ 1

N

N∑
n=1

F3(r
[n]
1 , r

[n]
2 , r

[n]
3 )

w3(r
[n]
1 , r

[n]
2 , r

[n]
3 )

, (3.87)
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Table 3.3: The F12 corrections (EF12 in mEh) from RI- and MC-MP2-F12 calculations and
the statistical uncertainty (ε in mEh) in MC-MP2-F12 calculations.a

Molecule Basis EF12(RI) EF12(MC) ε
H2O cc-pVDZ −82.2 −82.1 0.3
H2O cc-pVTZ −35.0 −34.5 0.7
H2O cc-pVQZ −16.1 −16.3 1.6
CH4 cc-pVDZ −46.0 −46.2 0.3
CH4 cc-pVTZ −18.5 −19.3 1.1
CH4 cc-pVQZ −8.3 −9.2 2.6
C6H6 cc-pVDZ −215.4 −214.7 1.3
C6H6 cc-pVTZ −95.0 −94.9 4.3
C6H6 cc-pVQZ −44.5 −35.8 9.9

aThe Hylleraas functional was used in the RI-MP2-F12 calculations. In all calculations, the geminal expo-

nent, γ = 1.2 was employed. For H2O and CH4, 2× 106 MC steps were used, while 8× 106 steps were used

for C6H6.

where the integrand is defined by

F3(r1, r2, r3) = −5

4

f23O13O22O31

r12

+
1

4

f23O12O23O31

r12

(3.88)

with

Opq =
occ.∑
i

ϕ∗i (rp)ϕi(rq). (3.89)

Table 3.3 lists the F12 energy corrections from the MC-MP2-F12 calculations and the MP2-
F12 calculations for a few molecules with the cc-pVXZ (X = D, T, Q) basis sets.18 In our
MP2-F12 calculations, the RI approximation was used in the evaluation of many-electron
integrals. It is clear that the MC-MP2-F12 method can give results that are within a few
mEh of the MP2-F12 method. However, the uncertainty of the MC-MP2-F12 calculation
increases as the size of the basis set increases. Nevertheless, the MC-MP2-F12 method
presents a viable alternative to the regular MP2-F12 method when small basis sets are used.
Since the operation cost of the MC integration per step scales quadratically with size, the
MC-MP2-F12 method might be advantageous for large-scale systems.

In addition, Flad et al.115 have studied the performance of the transcorrelated equation for
the quantum Monte Carlo (QMC) Jastrow factors, the product of which with the reference
comprises the wave function. In their calculations, the integrals involved are evaluated
using QMC methods. Their test calculations on a few atoms and molecules demonstrated
that QMC can be an efficient approach to compute the complicated integrals involved in
explicitly correlated methods. More recently, they proposed a general approach to combine
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QMC and F12 methods,116 where optimized pair-correlation functions from Jastrow factors
are transferred into F12 methods.

3.4 Summary

The F12 approach reduces the basis set error of the correlation energy by augmenting the
orbital expansion with a small set of explicitly correlated geminals, which can efficiently
describe the wave function near the electron coalescence. The F12 methods were first imple-
mented by Kutzelnigg and Klopper within the MP2 framework.58,64,117 Since then, the rapid
improvement of the F12 technology has significantly improved the efficiency and accuracy
of F12 methods. The key developments include robust RI approximations,66,67 numerical
quadrature,68 density fitting,118,119 and efficient nonlinear correlation factors.71,73,79 New ba-
sis sets specifically designed for F12 methods15–17 have also been developed. However, their
performance with F12 calculations needs to be investigated with more comprehensive tests.
F12 corrections have been shown to be very effective in reducing basis set errors of correla-
tion energies, and the HF basis set errors are often the largest source of the residual errors.
Thus, the CABS singles correction is also included in the F12 calculations to reduce the
HF basis errors. The basis set errors of HF energies with the CABS singles correction are
comparable to those of correlation energies with F12 corrections.

To further improve the accuracy of the F12 calculations, coupled-cluster F12 methods59,88,91

were introduced. Due to the complexity of the full CC-R12 methods, practical approxima-
tions to CC-F12,76,80,94,95,97,109 both iterative and non-iterative, have also been developed.
These approximate CC-F12 methods are almost as accurate as the full CC-F12 methods,
but their computational cost is a fraction of the cost of the CC-F12 methods. Among them,
the CC(F12) methods are the most expensive and usually the most accurate approximate
CC-F12 methods. The CC(F12*) and CC[F12] variants are simplified CC(F12) methods,
but retain equivalent accuracy to the CC(F12) models. While less expensive, CC-F12x and
CC(2)F12 models are slightly less accurate than the CC(F12) methods. In general, their per-
formance is similar with some small variations for calculations of different properties. Today
the F12 methods have become efficient and competitive with the extrapolation approach:120

approximate CC-F12 methods require a basis set of two cardinal numbers lower compared
with the standard CC methods for the same accuracy.

Despite these tremendous developments, the F12 approach continues to evolve. Recently,
it has been extended to study systems where multi-reference treatment is needed.62,75,110,111

Moreover, new F12 variants, such as MC-MP2-F12,113 have begun to emerge. In addition,
recent work has been extended to computations of response properties13,14,121 and relativistic
effects.122,123 In the future, we can reasonably expect more developments in these areas.



Chapter 4

Prediction of Reaction Barriers and
Thermochemical Properties with
Explicitly Correlated Coupled-Cluster
Methods: A Basis Set Assessment

Reproduced in part with permission from J. Zhang and E. F. Valeev, J. Chem. Theory
Comput., 2012, 8, 3175. Copyright 2012 American Chemical Society.

4.1 Introduction

Quantitative low-temperature computational kinetics are challenging because they require
predictions of electronic energy differences (reaction energies, atomization energies, en-
thalpies of formation, and reaction barriers) with chemical accuracy, usually defined as errors
not exceeding 1 kcal/mol (4.18 kJ/mol) or even as 1 kJ/mol. Despite the impressive recent
progress of density functional theory (DFT) methodology, its applicability to computational
kinetics is still limited. For example, a comprehensive testing of DFT and wave function
methods by Zheng and Truhlar7 against the DBH24/08 database of benchmark reaction
energies5,6 revealed that the performance of the best empirically-tailored hybrid DFT model
chemistries approaches the 1 kcal/mol (4.2 kJ/mol) mean unsigned error, whereas the ma-
jority of hybrid DFT functionals result in average errors of several kilocalories per mole.
The high-end many-body wave function methods appear to be the only way at the moment
to reliably reduce the errors below the chemical-accuracy mark; e.g., the “gold standard”
coupled-cluster singles, doubles, and perturbative triples-[CCSD(T)] method with a rela-
tively large aug-cc-pCV(T+d)Z basis, while orders of magnitude more expensive than the
DFT counterparts, was in error by only ∼ 0.5 kcal/mol.

41
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We should note that the electronic components of the molecular energies are the principal—
but not the only—stumbling block here. The most accurate first-principles thermochemical
models124 inform us that prediction of relative energies to sub-1-kcal/mol accuracy reliably
requires accounting for the effects of (1) anharmonicity, (2) special relativity (kinematic,
Darwin, and spin-orbit terms), and (3) adiabatic coupling of electronic and nuclear motions.
Yet the biggest remaining challenge is accurate computation of relative “bare” electronic
energies: it requires (4) high-end wave function models and (5) reduction of the basis set
error (typically, via basis set extrapolation). This chapter is concerned with the last issue,
the basis set error, its role in prediction of the electronic reaction barriers, and to what
extent it is alleviated by the use of novel explicitly correlated wave function methods.

The most troublesome origin of the basis set error of many-body wave functions is the sole
use of Slater determinants as the building blocks. Standard wave function methods, such as
CCSD(T) or multireference configuration interaction (MRCI), predict electron correlation
energies with basis sets errors that decrease in atoms as O[(Lmax + 1)−3] for a basis set
saturated to the angular momentum Lmax.8 The basis set problem is due to the orbital
product nature of Slater determinants; the Coulomb hole36 that appears at short inter-
electronic distances cannot be efficiently described by orbital products alone.34 Explicitly
correlated methods overcome this problem by modeling the Coulomb hole in terms that
depend on the inter-electronic distances (rij). For atoms, the explicitly correlated methods
of F12 type (pioneered by Kutzelnigg9 and commonly known as “R12 methods”) have basis
set errors of O[(Lmax + 1)−7]. The need to compute expensive three- and four-electron
integrals, characteristic of all explicitly correlated methods, is avoided in F12 methods by
the resolution of the identity;64–66,68 only two-electron, albeit nonstandard, integrals are
needed in F12 methods.

Rapid improvement of the F12 technology over the last decade has made it ready for use by
nonspecialists. The modern F12 methods are efficient and competitive with extrapolation:
to achieve the same basis set error, the approximate CC-F12 methods require a basis set
of two cardinal numbers lower than the comparable standard CC computation. Despite
the tremendous progress, the F12 technology is not yet sufficiently robust for black-box
applications across the periodic table. One of the significant challenges, among many, is the
requirement for particular orbital basis set types (OBS). Specifically, for robust performance
in the F12 context, the OBS needs to include diffuse atomic orbitals; this requirement makes
the applications of F12 methods difficult to large systems as well as to some electronically
excited states. The only recommended options for F12 computations remain the cc-pVXZ-
F12 series of F12-optimized basis sets of Peterson et al.15–17 and the standard aug-cc-pVXZ
series of Dunning et al.18–20 In this work, our goal is to systematically evaluate these two
series of basis sets, with an eye toward future improvement along the lines of the recent work
of some of us.125

In this chaper, we document the extension of the perturbative coupled-cluster F12 method,
CCSD(T)F12, developed in our group for the treatment of high-spin open-shell molecules
and implemented in the open-source freely available Massively Parallel Quantum Chemistry
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Table 4.1: The reactions including forward and reverse directions in the DBH24/08
database.5–7,a

Reaction No. Reaction
Heavy-Atom Transfer

1 H + N2O ↔ OH + N2

2 H + ClH ↔ HCl + H
3 CH3 + FCl ↔ CH3F + Cl

Nucleophilic Substitution
4 Cl−· · ·CH3Cl ↔ ClCH3· · ·Cl−

5 F−· · ·CH3Cl ↔ FCH3· · ·Cl−

6 OH− + CH3F ↔ HOCH3 + F−

Unimolecular and Association
7 H + N2 ↔ HN2

8 H + C2H4 ↔ CH3CH2

9 HCN ↔ HNC

Hydrogen Transfer
10 OH + CH4 ↔ CH3 + H2O
11 H + OH ↔ O + H2

12 H + H2S ↔ H2 + HS

aThere are 22 unique reaction barriers (the forward and reverse reactions in reaction 2 and 4 are the same).

(MPQC) package.101 We assessed its performance for accurate studies of chemical reactivity
by performing benchmark calculations of reaction barrier heights and thermochemical prop-
erties including electronic reaction energies, atomization energies, and enthalpies of forma-
tion. The performance of the CCSD(T)F12 method for reaction barrier heights is assessed by
benchmarking against the DBH24/08 database (Table 4.1). The performance for electronic
reaction energies is gauged for the HJO12 set of 12 isogyric reactions1 (Table 4.2), which
range from nearly thermoneutral to highly exothermic and involve breaking and forming an
assortment of chemical bond. The performance for computation of the atomization energies
and enthalpies of formation of the molecules is measured for the standard high-accuracy ex-
trapolated ab initio thermochemistry (HEAT) set.126 The HEAT test set includes 31 atoms
and molecules for which both experimentally derived and theoretical enthalpies of formation
(at 0 K) are available in better than a 1 kJ/mol agreement.

We performed two types of analyses targeting the two distinct uses of explicitly correlated
CCSD(T) models: as a replacement for basis-set-extrapolated CCSD(T) in highly accurate
composite methods like HEAT and as a distinct model chemistry for standalone applications.
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Table 4.2: The HJO12 set of isogyric reactions involving 20 small molecules.

Reaction No. Reaction
1 CO+H2 → CH2O
2 N2+3H2 → 2NH3

3 C2H2 + H2 → C2H4

4 CO2 +4H2 → CH4 +2H2O
5 CH2O+2H2 → CH4 +H2O
6 CO+3H2 → CH4+H2O
7 HCN+3H2 → CH4+NH3

8 HNO+2H2 →NH3+H2O
9 C2H2 + 3H2 → 2CH4

10 CH2 + H2 → CH4

11 F2 + H2 → 2HF
12 2CH2 → C2H4

Hence, we analyzed in detail (1) the basis set error of each component of the CCSD(T)F12

contribution to the chemical energy difference in question and (2) the total error of the
CCSD(T)F12 model chemistry relative to the benchmark values.

We begin with a brief description of the theoretical approach and computational details
in Section 4.2. Results of computations and their discussion are given in Section 4.3. We
summarize our findings and discuss their relevance to the future applications of F12 methods
in Section 4.4.

4.2 Computational Methods

The original diagonal orbital-invariant formulation of the perturbative coupled-cluster F12
method, CCSD(T)F12, was reported for closed-shell species in Ref. 98. An open-shell variant
of the CCSD(T)F12 method has been reported by our group109 before based on the nondiago-
nal ansatz with optimized geminal coefficients. In this work, we implemented the open-shell
method using the diagonal orbital-invariant (SP) ansatz of Ten-no;68 this development is sim-
ilar to work by others96,127 in the context of the iterative CC-F12 methods. Thus, we only
report the essential details of the open-shell variant of the method; the full programmable
equations as implemented in the MPQC package are reported in the Supporting Information
(Section 4.5).
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4.2.1 The CCSD(T)F12 Formalism

The CCSD wave function captures the effects of two-electron correlations and the resulting
orbital relaxation in a finite basis:

ΨCCSD ≡ exp(T̂ )|Ψ0〉 (4.1)

T̂ ≡ T̂1 + T̂2 (4.2)

T̂1 ≡ tiaã
a
i (4.3)

T̂2 ≡
1

(2!)2
tijabã

ab
ij (4.4)

where Ψ0 is the Hartree-Fock reference function (the notation is explained in the Appendix
A). In the CCSD(T)F12 method, the CCSD wave function is extended perturbatively to
account for the effect of three-electron correlations in the finite basis (via standard triple
excitations), residual orbital relaxation effects (via standard single excitations into the com-
plementary auxiliary basis set (CABS)), as well as for short-distance two-electron correla-
tions (via explicitly correlated geminals).109 The corresponding CCSD(T)F12 energy has four
contributions:

ECCSD(T)F12
= ECCSD + E(T) + E(2)S + E(2)F12

, (4.5)

where the first two terms add up to the standard CCSD(T) energy, the next contribution
is the usual “CABS singles” correction,80 and the last contribution is due to the explicit
correlated F12 terms. In the diagonal orbital-invariant approach to CCSD(T)F12,98 the
E(2)F12

contribution is evaluated directly from the usual Hylleraas functional, without any
parameter optimization:

E(2)F12
= 〈1|Ĥ(0)|1〉+ 〈0|Ĥ(1)|1〉+ 〈1|Ĥ(1)|0〉. (4.6)

The zeroth- and first-order Hamiltonians are defined from the similarity-transformed CCSD
Hamiltonian, H̄ ≡ exp(−T̂ )Ĥ exp(T̂ ), by matrix (Löwdin) partitioning108 so that Ĥ(0) in Eq.
4.6 becomes the standard Fock operator, F̂ , and Ĥ(1) becomes H̄. The left- and right-hand
zeroth-order wave functions are the standard left- and right-hand CCSD “wave functions”:

|0〉 ≡ |Ψ0〉, (4.7)

〈0| ≡ 〈Ψ0|(1 + Λ̂), (4.8)

where Λ represents the undetermined multipliers of the CCSD Lagrangian.1 Since Λ̂ is not
necessary for computing the CCSD energy (it is, however, necessary for computing molecular
properties), by analogy with the CCSD(T) method we invoke approximation Λ̂ ≈ T̂ †.107

The first-order wave function,

|1〉 ≡ 1

2!

∑
ij

|Γijij〉, (4.9)
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is composed of geminal functions, defined as

|Γijij〉 =
1

2!
R̄ij
αβα̃

αβ
ij |Ψ0〉, (4.10)

where R̄ij
αβ is the antisymmetrized matrix element of the geminal correlation factor f(r12):

Rij
αβ = 〈αβ|Q̂12f(r12)|ij〉. (4.11)

Projector Q̂12 ensures that the geminal functions in Eq. 4.10 are strongly orthogonal (or-
thogonal to the |Ψ0〉 and to the single excitations) as well as orthogonal to the standard
double excitations:66

Q̂12 = (1− Ô1)(1− Ô2)− V̂1V̂2, (4.12)

where Ô and V̂ are the projectors on the occupied and virtual orbitals.

The geminal correlation factor is designed so that functions |Γijij〉 describe the short-range
two-electron correlation according to the first-order cusp condition for the pair function |ψij〉:

r12 → 0 : |ψ(1)
ij 〉 = Clr12|ψ(0)

ij 〉, (4.13)

where Cl is the cusp coefficient that depends on the permutational symmetry of ψ
(0)
ij . In

practice, it is sufficient to consider only two cases: for singlet pairs C0 = 1/2 and for triplet
pairs C1 = 1/4 (more exotic cases, such as the unnatural parity singlet for which C2 = 1/6,
can be realized in heavy atoms8). The appropriate selection of the proper coefficient can
be attained using a spatial coordinate permutation operator68 or, equivalently, with spin
projectors:

P̂0 = |αβ〉0〈αβ|0 (4.14)

P̂1 = |ββ〉〈ββ|+ |αβ〉1〈αβ|1 + |αα〉〈αα| (4.15)

with

|αβ〉0 =
1√
2
{α(1)β(2)− β(1)α(2)}, (4.16)

|αβ〉1 =
1√
2
{α(1)β(2) + β(1)α(2)}. (4.17)

Thus, the spin-adapted geminal correlation factor is written as

f(r12) ≡ (C0P̂0 + C1P̂1)γ(r12). (4.18)

In this work, γ(r12) was the standard exponential correlation factor of Ten-no71 expanded
as a linear combination of Ng = 6 Gaussian geminals:73

γ(r12) ≡ −lc exp(−r12/lc) ≈
Ng∑
i

ci exp(−αir2
12). (4.19)
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The correlation length scale, lc ∼ 1 a0, was set to a value that depends empirically on the
orbital basis set.

With the new form of geminal functions, the second-order F12 correction (Eq. 4.6) for the
first-order wave function ansatz (Eq. 4.9) has the following form:

E(2)F12
=
∑
i<j

ε
(2)
ij , (4.20)

ε
(2)
ij = 2Ṽ ij

ij + B̃ij
ij , (4.21)

where Ṽ ij
ij is the geminal matrix of the first-order Hamiltonian and has the following form:

Ṽ ij
ij ≡ V ij

ij +
1

2
(V ij

ab + Cij
ab)t

ab
ij + V ij

ia t
a
j + V ij

aj t
a
i , (4.22)

V ij
pq ≡

1

2
R̄ij
αβ ḡ

αβ
pq , (4.23)

Cij
ab ≡ Fα

a R̄
ij
αb + Fα

b R̄
ij
aα. (4.24)

B̃ij
ij is the geminal matrix of the zero-order Hamiltonian. If we assume canonical Hartree-Fock

orbitals, it is expressed as

B̃ij
ij ≡ Bij

ij − (F i
i + F j

j )X ij
ij , (4.25)

Bij
ij ≡ R̄ij

αβF
β
γ R̄

αγ
ij , (4.26)

X ij
ij ≡

1

2
R̄ij
αβR̄

αβ
ij . (4.27)

The infinite-range sums in the matrices V , C, and X were approximated by finite sums over
the complementary auxiliary basis set (CABS),66 while B used approximation C of Kedzuch
et al.67 as well as the CABS approach (complete details have been described by one of us
elsewhere120).

Because the (T) correction to CCSD(T) is most commonly formulated in the spin-unrestricted
framework, we assumed that the spatial parts of spin-orbitals are spin-dependent. After in-
tegrating out the spin degrees of freedom, we arrived at the final expression for Eq. 4.20:

E(2)F12
=
∑
I<J

ε
(2)
IJ +

∑
I,J̄

ε
(2)

IJ̄
+
∑
Ī<J̄

ε
(2)

ĪJ̄
, (4.28)

ε
(2)
IJ = 2C1Ṽ

IJ
IJ + C2

1 B̃
IJ
IJ , (4.29)

ε
(2)

IJ̄
= (C0 + C1)Ṽ IJ̄

IJ̄ + (C0 − C1)Ṽ J̄I
IJ̄ +

(C0 + C1)2

4
B̃IJ̄
IJ̄

+
C2

0 − C2
1

4
B̃J̄I
IJ̄ +

C2
0 − C2

1

4
B̃IJ̄
J̄I +

(C0 − C1)2

4
B̃J̄I
J̄I , (4.30)

ε
(2)

ĪJ̄
= 2C1V

ĪJ̄
ĪJ̄ + C2

1 B̃
ĪJ̄
ĪJ̄ . (4.31)

The detailed expressions for the spin-free matrices Ṽ and B̃ are presented in the Supporting
Information (Section 4.5).
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4.2.2 Computational Details

The (U)QCISD/MG3 molecular geometries for the DBH24/08 database were obtained from
Ref. 5. Two types of orbital basis sets were utilized for the reaction barrier calculation:

• The cc-pVXZ-F12 family of basis sets (X = D, T, Q) designed by Peterson and co-
workers15 to be used specifically with explicitly correlated methods. The comple-
mentary auxiliary basis set (CABS) was constructed from the matching cc-pVXZ-
F12/OptRI basis sets16 using the CABS+ approach.66

• The standard aug-cc-pVXZ family of basis sets (X = D, T, Q) that was designed
by Dunning et al.18–20 for computations with standard correlated methods (for S
and Cl atoms, the corresponding basis sets augmented with tight d functions, aug-
cc-pV(X+d)Z,128 were used). The complementary auxiliary basis set (CABS) was
constructed using the matching aug-cc-pVXZ/OptRI basis sets84 using the CABS+
approach.66

The evaluation of Eq. 4.28 utilized the robust density fitting118 in a cc-pV(X+1)Z-RI basis
set for the cc-pVXZ-F12 calculation and an aug-cc-pVXZ-RI basis set for the aug-cc-pVXZ
calculation, where X is the cardinal number of the corresponding orbital basis; the con-
ventional CC wave functions and energies were evaluated without the density fitting. The
recommended correlation length scales15 were used; correlation factors were expanded in
terms of six Gaussian geminals.3

Although there are only 22 unique barriers in the DBH24/08 database, to be consistent with
Zheng et al.7 in our analysis we also considered all 24 barriers statistically independent. The
recommended spin-orbit energies7 were used to correct the energies of Cl, O, OH, and HS
radicals. Other relativistic effects were neglected. In the calculations of reaction barriers
here, only the valence electron correlations were considered (core correlation contributions
were estimated to be below 0.1 kcal/mol, as described below).

Experimental geometries were used for the 20 closed-shell molecules involved in the HJO12
set of reactions.1 The computational procedure was identical to that used for the DBH24/08
set. The core-correlation corrections were obtained from Ref. 1.

The CCSD(T)/cc-pVQZ geometries from Ref. 126 were used for the molecules in the HEAT
test set. Two core correlation basis sets were utilized for the calculations of atomization
energies and enthalpies of formation. The first sets are the cc-pCVXZ-F12 (X = D, T, Q)
basis sets, which are also designed by Peterson et al.83 for the explicitly correlated methods,
and the second sets are the standard aug-cc-pCVXZ (X = D, T, Q) basis set,18,20 which are
used for the standard correlation methods. The CABS was constructed with the cc-pCVXZ-
F12/OptRI basis sets83 using the CABS+ approach.66 The aug-cc-pwCV(X+1)Z-RI basis
set was used for the robust density fitting118 in the evaluation of Eq. 4.28. The anharmonic
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zero-point energies calculated within the HEAT model were used, while other relativistic
corrections were neglected.

All explicitly correlated calculations were performed using the trunk version of the Massively
Parallel Quantum Chemistry (MPQC) package101 (it can be obtained for free under the
GNU General Public License (GPL) at http://www.mpqc.org/). The CC wave functions
and energies were computed with the PSI3 suite.129

4.3 Discussion of Results

4.3.1 Basis Set Errors of Reaction Barriers

The mean unsigned basis set errors of the standard and explicitly correlated CCSD(T)
energies (and their selected components) for the DBH24/08 reaction barriers are presented
in Figure 4.1. The basis set errors (BSE) were defined with respect to the complete basis set
(CBS) limits defined as follows: (1) the HF(2)S/cc-pVQZ-F12 energies were used as the CBS
Hartree-Fock limit; (2) the CBS limits for the CCSD and (T) correlation energy components
were obtained using the standard X−3 extrapolation formula33 from the aug-cc-pVTZ and
aug-cc-pVQZ values.

First, we note that the basis set errors of the Hartree-Fock contributions to reaction barriers
cannot be neglected (∼ 4 kJ/mol with the aug-cc-pVDZ basis set). Although the HF BSEs
are smaller with the cc-pVXZ-F12 basis sets than with the aug-cc-pVXZ counterparts (due
to the extra s and p functions in the former), at the double-ζ level the use of CABS singles
correction is mandatory. Even with the correction, the aug-cc-pVDZ HF energy is still in
error by ∼ 1 kJ/mol.

The basis set errors of CCSD energies are large: ∼ 3-4 kJ/mol with the double-ζ basis set,
and ∼ 1.5 kJ/mol with a triple-ζ basis set. Explicitly correlated CCSD energies have greatly
reduced basis set errors: for example, the mean unsigned BSE of CCSD(2)F12/cc-pVDZ-F12
is 1.38 kJ/mol. Note that when used with non-F12 methods the F12-optimized cc-pVXZ-
F12 basis sets result in larger basis set errors than the standard aug-cc-pVXZ basis sets,
as expected. In combination with F12 methods, only the cc-pVDZ-F12 basis set is clearly
preferred over the aug-cc-pVDZ counterpart; at the triple- and quadruple-ζ levels, the two
basis set families result in essentially identical BSEs, on the order of 0.2 kJ/mol or below.
Unfortunately, it is not possible to judge the relative performance of the two families any
further because of the limited accuracy of the CBS limits. We estimate the current CBS
limit for CCSD energy obtained by the extrapolation to be only accurate to 0.1 kcal/mol
(∼ 0.4 kJ/mol). This figure is in line with the mean unsigned difference of 0.25 kJ/mol
between the cc-pVQZ-F12 and aug-cc-pVQZ CCSD(2)F12 energies. It is unlikely that the
CBS limits can be deduced more accurately without performing time-consuming quintuple-
ζ computations; however, since the 0.1 kcal/mol accuracy is quite satisfactory, we do not
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Figure 4.1: Average unsigned basis set errors (kJ/mol) of various electronic contributions
to the reaction barriers. “HF” and “HF(2)S” refer to the Hartree-Fock energies without
and with inclusions of the CABS singles correction (Eq. 4.5). Other labels refer to the
correlation energy contributions only (“(T)” refers to the E(T) energy only). Definitions of
the CBS limits for each component are provided in the text.

consider it worthwhile at the moment.

Finally, the CCSD(T) BSE is greatly reduced also by the use of the explicit correlation. Only
a double-ζ basis set is sufficient with the CCSD(T)F12 method for ∼ 1.6 kJ/mol BSE; triple-ζ
basis sets further reduce basis set errors to∼ 0.5 kJ/mol. The conventional CCSD(T) method
requires basis sets one cardinal number greater (triple and quadruple-ζ, respectively) to
achieve the same precision. Even with the explicitly correlated CCSD method, the remaining
basis set errors are comparable to the basis set errors of the (T) contribution to the CCSD(T)
energy. Therefore it is, in our opinion, acceptable to treat the (T) energy without the use of
explicitly correlated three-body functions, unless extremely high accuracy is needed.

We observed a peculiar behavior of basis set errors of CCSD(2)F12 and (T) contributions:
(1) with the cc-pVXZ-F12 basis sets, the two errors add up constructively; thus the mean
unsigned error of CCSD(T)F12 is greater than that of CCSD(2)F12, e.g., for cc-pVDZ-F12:
1.76 kJ/mol vs. 1.38 kJ/mol. (2) With the aug-cc-pVXZ basis sets, the errors cancel; thus,
the mean unsigned error of CCSD(T)F12 is smaller than that of CCSD(2)F12, e.g., for aug-
cc-pVDZ: 1.55 kJ/mol vs. 1.97 kJ/mol. It is not clear whether this behavior is systematic;
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it will be important in the discussion of total errors in Section 4.3.5.

4.3.2 Basis Set Errors of Reaction Energies

Figure 4.2 shows the basis set errors of the HF energies and various correlation contributions
to the electronic reaction energies for the HJO12 set1 of isogyric reactions. The CBS limits
for the basis set errors were defined as follows: (1) the CBS Hartree-Fock values were the
reaction energies computed with the aug-cc-pV6Z basis set. (2) The valence (T) CBS limit
was obtained by the basis set extrapolation with the Schwenke method130 using aug-cc-
pVQZ and aug-cc-pV5Z basis sets. (3) The CBS limit for the CCSD(T) valence correlation
energies was obtained by subtracting from the CBS CCSD(T) energies1 (obtained by the
X−3 extrapolation using the cc-pCV5Z and cc-pCV6Z basis sets) the cc-pV6Z HF energies
and the core-correlation energies given in Ref. 1. (4) The CCSD CBS limit was obtained
by subtracting the Schwenke extrapolated CBS limit of the valence (T) energies from the
CCSD(T) CBS limit.

HF HFH2LS CCSD CCSDH2L
F12

HTL CCSDHTL CCSDHTL
F12
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aug-cc-pVDZ

aug-cc-pVTZ

aug-cc-pVQZ

Figure 4.2: Average unsigned basis set errors (kJ/mol) of various electronic contributions
to the reaction energies. “HF” and “HF(2)S” refer to the Hartree-Fock energies without
and with inclusions of the CABS singles correction (Eq. 4.5). Other labels refer to the
correlation energy contributions only (“(T)” refers to the E(T) energy only). Definitions of
the CBS limits for each component are provided in the text.
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A very large HF basis set error results from the use of the aug-cc-pVDZ basis set (13.6
kJ/mol). Fortunately, the CABS singles correction reduces the basis set error to 1.2 kJ/mol.
Although the HF BSE to reaction energies with the cc-pVDZ-F12 basis set is much smaller
(2.8 kJ/mol), the CABS singles correction is still needed to reduce the error around 1 kJ/mol.
At the triple-ζ level, however, the HF BSE with the F12 basis set is slightly larger than that
with the non-F12 counterpart, but the HF BSE with the two basis sets become identical at
the quadruple-ζ level.

The basis set errors of CCSD energies are large, especially with the double-ζ basis sets (over
13 kJ/mol). Explicitly correlated CCSD energies have much smaller basis set errors (∼ −4
kJ/mol for X = D and ∼ 1 kJ/mol for X = T, Q ). Compared to the CCSD(2)F12 BSEs,
the (T) BSEs are noticeably smaller, especially at the double-ζ level. Unexpectedly, we note
that the cc-pVXZ-F12 (X = D, T) basis sets give slightly larger CCSD(2)F12 BSE than the
corresponding aug-cc-pVXZ basis sets for all of the cases but have slightly smaller basis set
errors for the (T) contributions than the aug-cc-pVXZ basis sets.

The basis set errors of the standard CCSD(T) energies are very large and slowly convergent,
but the use of the explicit correlation significantly reduces the basis set errors. The triple-ζ
CCSD(T)F12 calculations have BSEs twice smaller than the quadruple-ζ CCSD(T) calcu-
lations. With the quadruple-ζ basis sets, the basis set errors decrease to under 1 kJ/mol.
Overall, the BSEs from the two basis set families do not differ significantly. While the aug-
cc-pVXZ basis sets yield smaller BSEs than the cc-pVXZ-F12 basis sets when X = D, T,
the aug-cc-pVQZ basis set gives a larger error than the cc-pVQZ-F12 basis set, which has a
BSE close to zero.

4.3.3 Basis Set Errors of Atomization Energies

The basis set errors of the various electronic contributions to the atomization energies of the
HEAT test set are shown in Figure 4.3. The HF/aug-cc-pCV5Z energies were defined as the
CBS HF limit; the CBS limits for the CCSD and (T) correlation energy components were
obtained using the X−3 extrapolation formula33 with the aug-cc-pCVQZ and aug-cc-pCV5Z
values.

As expected, the F12 basis sets give smaller HF basis set errors than the non-F12 basis sets.
The basis set errors of the double-ζ HF contributions are large (> 8 kJ/mol), and the use
of the CABS singles correction is necessary to reduce the errors around 1 kJ/mol. At the
triple- and quadruple-ζ levels, however, the HF BSEs become quite small; the use of the
CABS singles correction can be optional.

The CCSD basis set errors are very large with the small basis sets (> 40 kJ/mol and > 19
kJ/mol for X = D and T, respectively). Even with the large quadruple-ζ basis sets, the BSEs
are still around 8 kJ/mol. Unexpectedly, at the double- and triple-ζ levels, the F12 basis
sets yield slightly smaller CCSD BSEs than the standard non-F12-optimized aug-cc-pCVXZ
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Figure 4.3: Average unsigned basis set errors (kJ/mol) of various electronic contributions
to the atomization energies. “HF” and “HF(2)S” refer to the Hartree-Fock energies without
and with inclusions of the CABS singles correction (Eq. 4.5). Other labels refer to the
correlation energy contributions only (“(T)” refers to the E(T) energy only). Definitions of
the CBS limits for each component are provided in text.

basis sets. The CCSD BSEs are significantly reduced by the use of the explicit correlation.
In fact, the double-ζ CCSD(2)F12 BSEs are noticeably smaller than the quadruple-ζ CCSD
BSEs. With the quadruple-ζ basis sets, the BSEs of the CCSD(2)F12 correlation energies are
reduced to below 1 kJ/mol. The two basis sets yield similar CCSD(2)F12 BSEs.

The (T) BSEs are slightly smaller than the explicitly correlated CCSD BSEs in most cases.
The only exception is the (T) BSE with the aug-cc-pCVDZ basis set. As a result, while
the BSE of the CCSD(T)F12 correlation energies with the aug-cc-pCVDZ basis set (12.12
kJ/mol) is noticably larger than the BSE of the CCSD(T) correlation energies with the aug-
cc-pCVQZ basis set (8.63 kJ/mol), the CCSD(T)F12 BSE with the cc-pCVDZ-F12 basis set
(8.93 kJ/mol) is smaller than the CCSD(T) BSE with the cc-pCVQZ-F12 basis set (9.06
kJ/mol), which follows the same pattern for the CCSD(2)F12 BSE. With the quadruple-
ζ basis sets, the basis set errors of the explicitly correlated CCSD(T) correlation energies
reduce to ∼ 1 kJ/mol. Different from the calculations in the previous sections, we find the
aug-cc-pCVXZ calculations yield larger basis set errors than the cc-pCVXZ-F12 basis set
when X = D and T, but give slightly smaller error than the corresponding F12 basis set
when X = Q.
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4.3.4 Basis Set Errors of Enthalpies of Formation

Figure 4.4 presents the basis set errors of the HF energies and various contributions to the
enthalpies of formation. The CBS limits were defined in the same way as the previous
section.
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Figure 4.4: Average unsigned basis set errors (kJ/mol) of various electronic contributions to
the enthalpies of formation. “HF” and “HF(2)S” refer to the Hartree-Fock energies without
and with inclusions of the CABS singles correction (Eq. 4.5). Other labels refer to the
correlation energy contributions only (“(T)” refers to the E(T) energy only). Definitions of
the CBS limits for each component are provided in the text.

Again, the HF basis set errors with the double-ζ basis sets are large, and the CABS singles
correction reduces the errors to around 1∼2 kJ/mol. As we increase the size of the basis set,
the use of the CABS singles correction becomes optional since the HF BSEs become small.

The basis set errors of the CCSD correlation energies range from ∼ 13 kJ/mol to ∼ 3 kJ/mol.
The range is reduced to ∼ 4 kJ/mol to ∼ 0.3 kJ/mol with the explicit correlation. The two
basis set families generate close basis set errors, and neither of them shows consistently better
performance than the other. Overall, the CCSD(T)F12 BSEs are close to the (T) BSEs.

Again, the explicitly correlation significantly improves the basis convergence of the CCSD(T)
correlation energies. The CCSD(T)F12 BSEs with the double-ζ basis sets are almost twice
smaller than the CCSD(T) BSEs with the quadruple-ζ basis sets. With the large quadruple-ζ
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Table 4.3: The mean unsigned errors and maximum unsigned errors (kJ/mol) of DBH24/08
reaction barriers computed with CCSD and CCSD(T) methods using the cc-pVXZ-F12 and
aug-cc-pVXZ basis set families.a

Method
MUE MaxUE

X = D X = T X = Q X = D X = T X = Q
cc-pVXZ-F12

CCSD 11.89 9.84 9.77 64.46 44.34 41.53
CCSD(2)F12 9.40 9.63 9.83 40.68 39.77 40.03
CCSD(T) 6.20 2.27 1.30 30.34 7.86 4.30
CCSD(T)F12 1.93 1.16 1.18 6.56 3.28 2.80

aug-cc-pVXZ
CCSD 7.59 9.14 9.63 47.62 43.06 41.20
CCSD(2)F12 8.04 9.36 9.76 32.85 38.52 38.95
CCSD(T) 5.21 2.37 1.24 16.06 6.99 4.12
CCSD(T)F12 1.72 1.05 1.08 4.44b 2.45 2.54c

aUnless noted specifically, the maximum errors were observed for the reverse barrier of reaction 1 (see Table

4.1). bReverse Reaction 6. cReverse Reaction 3.

basis sets, the basis set errors of explicitly correlated CCSD(T) correlation energies reduce to
around 0.6 kJ/mol. These values are close to the corresponding overall errors of the HEAT
model (0.24 kJ/mol). The BSEs from the calculations with the two basis sets are very
close, although the F12 basis sets give slightly better results for the standard and explicitly
correlated CCSD(T) correlation energies than the non-F12 basis sets.

4.3.5 Overall Performance of CCSD(T)F12 for Reaction Barriers

To access the overall performance of the CCSD(T)F12 model chemistry for computing reaction
barriers, we computed the mean unsigned errors (MUEs) and maximum unsigned errors
(MaxUEs) relative to the benchmark electronic barriers in the DBH24/08 database; the
results are presented in Table 4.3.

As expected, the barriers computed with the CCSD method have large errors: the majority
of the resulting MUEs are larger than 9 kJ/mol, and the MaxUEs are around or more than
41 kJ/mol. The inclusion of the F12 correction into the CCSD method reduces the MUEs
only slightly. This should not be surprising: the F12 correction only reduces the basis set
error and does not affect the method error.

We noticed that the MaxUEs are all from the reverse reaction barrier of reaction 1 (OH +
N2 → H + N2O), which has a very high reaction barrier (345.05 kJ/mol). To evaluate the
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MaxUE influence on the MUEs, we also computed the MUEs of different methods without
the MaxUE values. However, the new MUEs do not show a significant decrease; the errors
are still on the same level as those including the MaxUEs.

The inclusion of the perturbative triple correction (T) is crucial to obtain accurate reaction
barriers, as it becomes readily apparent from comparing the CCSD and CCSD(T) barri-
ers. Yet a triple-ζ basis is needed to reduce the CCSD(T) MUEs to around 2 kJ/mol;
the corresponding triple-ζ MaxUEs are still around or above 7 kJ/mol. Only with the large
quadruple-ζ basis sets do the maximum errors of the CCSD(T) barriers reduce to∼ 1 kJ/mol.
However, for the largest DBH24/08 test cases, each increase of the cardinal number increases
the computational cost of the CCSD(T) computation by an order of magnitude. Hence, with
the transition from aug-cc-pVDZ to aug-cc-pVQZ the mean and maximum CCSD(T) errors
reduce by a factor of 4, whereas the cost increases by a factor of O(100). The slow basis set
convergence is clearly a severe problem for computing the reaction barriers in the DBH24/08
set and must be dealt with to unleash the inherent high accuracy of the CCSD(T) method.

Fortunately, the basis set errors of CCSD(T) are reduced dramatically by switching to the
CCSD(T)F12 method. The use of F12 terms reduces the errors by an equivalent of 1 to 2
cardinal numbers (i.e., a double-ζ F12 result is between the accuracy of conventional triple-
and quadruple-ζ energies). Only a double-ζ basis set is sufficient to reduce the mean basis
set errors to below 2 kJ/mol. The mean errors reduce further to close to 1 kJ/mol with a
triple-ζ basis; the use of a quadruple-ζ basis results in no additional error decrease. The
maximum errors are also reduced dramatically compared to the standard CCSD(T) method,
below 4 kJ/mol with triple-ζ basis sets. The mean and maximum errors obtained with the
cc-pVXZ-F12 basis sets of Peterson and co-workers are greater than those obtained with the
aug-cc-pVXZ counterparts, even though the former family was designed specifically for the
use with F12 methods and have been found to outperform the standard basis sets.85 The
double-ζ results are especially surprising as the cc-pVDZ-F12 basis set is considerably larger
than the aug-cc-pVDZ counterpart (the cc-pVDZ-F12 basis set has one more s and two more
p functions). On the other hand, while the cc-pV{T,Q}Z-F12 basis sets are still larger than
the corresponding aug-cc-pV{T,Q}Z basis sets for non-hydrogen atoms, they are actually
smaller for hydrogen atom. For the hydrogen atom, the cc-pVTZ-F12 basis set has one less
d function than the aug-cc-pVTZ basis set, and the cc-pVQZ-F12 basis set has one less d
and f functions comparing to the aug-cc-pVQZ basis set.

To further investigate the effects of diffuse functions on the hydrogen atom, we carried the
aug-cc-pVXZ calculations with the cc-pVXZ basis sets for hydrogen atoms. We find that the
mean and maximum errors of the calculations (shown in Table 4.4) become larger, especially
for the calculations at the double-ζ level. However, the mean errors of the triple- and
quadruple-ζ level calculations are very close to those of the corresponding cc-pV{T,Q}Z-
F12 calculations. This indicates that the extra diffuse functions are not the reason for the
better performance of the aug-cc-pVXZ basis versus the cc-pVXZ-F12 basis. The discussion
of basis set errors in Section 4.3.1 suggests that the smaller overall errors obtained with
the aug-cc-pVXZ basis sets are perhaps due to a fortuitous cancellation of the CCSD(2)F12
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Table 4.4: The CCSD(T) and CCSD(T)F12 mean and maximum unsigned errors (kJ/mol) of
DBH24/08 reaction barriers using the aug-cc-pVXZ basis sets for non-hydrogen atoms and
the cc-pVXZ basis sets for hydrogen atom.a

Method
MUE MaxUE

X = D X = T X = Q X = D X = T X = Q
CCSD(T) 6.67 2.76 1.37 17.90 7.40 4.26
CCSD(T)F12 2.31 1.20 1.12 5.09b 3.54c 2.84c

aUnless noted specifically, the maximum errors were observed for the reverse barrier of reaction 1 (see Table

4.1). bForward Reaction 12. cReverse Reaction 12.

Table 4.5: The CCSD(T)F12 mean and maximum unsigned errors (kJ/mol) of DBH24/08
reaction barriers with the cc-pVXZ-F12 and aug-cc-pVXZ basis set families using different
geminal exponents (β).a,b

Basis
MUE MaxUE

β = 0.8 β = 1.0 β = 1.2 β = 0.8 β = 1.0 β = 1.2
cc-pVDZ-F12 2.08 1.91 2.07 8.14 5.67 5.22
cc-pVTZ-F12 1.10 1.16 1.22 3.63 3.28 3.24
aug-cc-pVDZ 1.65 1.65 1.81 4.17 4.27c 4.36c

aug-cc-pVTZ 1.08 1.05 1.05 2.59 2.37d 2.45

aThe optimal geminal exponents for the aug-cc-pVDZ, aug-cc-pVTZ, cc-pVDZ-F12, and cc-pVTZ-F12 basis

sets are 1.1, 1.2, 0.9, and 1.0, respectively.15 bUnless noted specifically, the maximum errors were observed

for the reverse barrier of reaction 1 (see Table 4.1). cReverse Reaction 6. dReverse Reaction 12.

and (T) energies. This, at the very least, suggests that the cc-pVXZ-F12 basis sets may
need a more thorough benchmarking for a variety of applications before the use of standard
non-F12-optimized basis sets is eliminated.

In addition, we performed the cc-pVXZ-F12 and aug-cc-pVXZ (X = D, T) calculations
with different geminal exponents (0.8, 1.0 and 1.2). The results are listed in Table 4.5. As
expected, the calculations at the triple-ζ level using different geminal exponents give very
similar results, which is also the case for the aug-cc-pVDZ calculations. For the cc-pVDZ-F12
calculations, while the MUEs of the calculations with different geminal exponents are still
close, the discrepancy between the corresponding MaxUEs is much larger. We also found the
calculations with optimal geminal exponents do not necessarily give the best results. This
suggests that the choice of geminal exponent is not crucial to the quality of the calculations
as long as the geminal exponent is chosen in a reasonable range.

In the calculations above, we only included the valence electron correlations. To address
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Table 4.6: The mean unsigned errors and maximum unsigned errors (kJ/mol) of the elec-
tronic reaction energies for the HJO12 isogyric reactions.1, a

Method
MUE MaxUE

X = D X = T X = Q X = D X = T X = Q
cc-pVXZ-F12

CCSD 11.5 6.4 6.8 37.5 24.5 19.7
CCSD(2)F12 6.0 7.5 8.3 15.3 16.2 16.1
CCSD(T) 15.3 8.8 3.7 32.8b 17.5b 8.4b

CCSD(T)F12 4.7 2.3 1.6 13.7b 6.4b 4.3b

aug-cc-pVXZ
CCSD 15.4 9.7 9.5 45.9 27.3 20.1
CCSD(2)F12 6.8 8.3 9.0 14.6 16.6 16.4c

CCSD(T) 10.6 3.7 1.8 35.1 13.3 5.4
CCSD(T)F12 3.7 1.5 1.2 7.5b 3.6b 3.1c

aUnless noted specifically, the maximum errors were observed for the Reaction 12 (see Table 4.2). b Reaction

2. c Reaction 11.

the influence of the core and core-valence electron correlations, we computed the MUEs
of CCSD(T)/aug-cc-pCVXZ (X = D, T) with and without a frozen core. The differences
between them with both basis sets are around 0.4 kJ/mol, which means the influence of the
core and core-valence electron correlations is not significant. Thus, it is reasonable to just
consider the valence electron correlations in the calculations, and the resultant errors will be
negligible.

4.3.6 Overall Performance of CCSD(T)F12 for Reaction Energies

The overall errors of the CCSD(T)F12 model chemistry for the HJO12 reaction energy set1

are listed in Table 4.6. The errors are relative to the experimentally derived values from Ref.
1, which are obtained by subtracting the vibrational and scalar relativistic energy corrections
from the experimental reaction energies. Note that we employed valence conventional and
explicitly correlated CCSD and CCSD(T) methods; hence the core correlation contributions
from Ref. 1 were included additively.

As expected, the inclusion of the F12 correction into the CCSD(T) method significantly
improves the accuracy of the reaction energies. Similarly to the reaction barriers, the intro-
duction of F12 terms reduces the basis set requirements by between 1 and 2 cardinal numbers;
e.g., we found that the errors of the triple-ζ CCSD(T)F12 calculations are smaller than those
of the quadruple-ζ CCSD(T) calculations. With the quadruple-ζ basis sets, the CCSD(T)F12

calculations have MUEs of about 1 kJ/mol, and MaxUEs around 3∼4 kJ/mol. Remarkably,
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Table 4.7: The mean unsigned errors and maximum unsigned errors (kJ/mol) of atomization
energies for the HEAT test set.a

Method
MUE MaxUE

X = D X = T X = Q X = D X = T X = Q
cc-pCVXZ-F12

CCSD 75.38 45.39 33.71 152.14 91.82 70.51
CCSD(2)F12 31.55 27.48 25.92 62.03 57.87 55.22
CCSD(T) 52.65 20.50 8.18 100.36 35.55 14.30b

CCSD(T)F12 8.82 2.62 0.95 15.88c 5.16d 2.87d

aug-cc-pCVXZ
CCSD 88.30 46.22 33.09 167.51 98.72 70.84
CCSD(2)F12 29.91 26.28 25.47 55.54c 54.28 54.20
CCSD(T) 69.85 21.81 7.60 133.14c 43.58 15.36b

CCSD(T)F12 11.46 2.13 0.99 29.46c 5.84d 3.14

aUnless noted specifically, the maximal errors were from calculations of CO2. b N2. c C2H2. d CN.

the aug-cc-pVXZ basis sets are found to yield smaller errors than the cc-pVXZ-F12 basis
sets. This is especially pronounced for the maximum errors. In fact, the aug-cc-pVTZ basis
set gives a slightly smaller MUE and MaxUE than the cc-pVQZ-F12 basis set.

4.3.7 Overall Performance of CCSD(T)F12 for Atomization Ener-
gies and Enthalpies of Formation

The performance of the CCSD(T)F12 model chemistry for thermochemical computations
was further tested against the HEAT test set. We computed the atomization energies and
enthalpies of formation with the all-electron conventional and explicitly correlated CCSD and
CCSD(T) methods. The results were augmented with the (anharmonic) zero-point energies
taken from the HEAT reference database; all other corrections were neglected.

The mean and maximum unsigned errors of atomization energies are listed in Table 4.7.
The atomization energies computed within the HEAT model were used as the reference.
The inclusion of F12 terms again reduces the errors by an equivalent of 1.5 to 2 cardinal
numbers, with better improvements observed for the cc-pCVXZ-F12 series. In almost all
instances, the cc-pCVXZ-F12 CCSD(T)F12 errors are smaller than the corresponding aug-
cc-pCVXZ errors (the lone exception is the mean error of the cc-pCVTZ-F12 data).

Similar trends were observed for the enthalpies of formation (see Table 4.8). The reference
values are the enthalpies of formation computed within the HEAT model using the elemental
reaction approach. It can be seen that the MaxUEs come from either the C/N atoms or
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Table 4.8: The mean unsigned errors and maximum unsigned errors (kJ/mol) of enthalpies
of formation for the HEAT test set.a

Method
MUE MaxUE

X = D X = T X = Q X = D X = T X = Q
cc-pCVXZ-F12

CCSD 29.93 21.17 17.68 83.09 52.55 41.20b

CCSD(2)F12 13.74 15.26 15.19 35.66 34.08 32.66
CCSD(T) 17.77 7.86 3.11 52.74 19.84 7.80
CCSD(T)F12 2.17 0.89 0.90 5.75c 2.47c 2.46d

aug-cc-pCVXZ
CCSD 34.24 23.31 18.26 98.05 57.99 41.71
CCSD(2)F12 11.15 14.90 15.18 29.87 32.58 32.25
CCSD(T) 24.10 9.47 3.48 73.21 26.08 8.51
CCSD(T)F12 2.79 1.27 1.11 11.52e 3.07f 2.71d

aThe molecule, for which the error is maximal, is the C atom unless noted specifically. H2, N2, O2, F2, and

CO were not included in the analysis since the elemental reaction approach, which was used to calculate

the enthalpies of formation, defines these molecules as the standard states for elements H, N, O, F, and C,

respectively. bCCH. cN. dCN. eC2H2. fCO2.

molecules which contain them. In all cases, the cc-pCVXZ-F12 CCSD(T)F12 errors are
smaller than the corresponding aug-cc-pCVXZ errors.

4.4 Conclusions

In this work, we evaluated the performance of the perturbative explicitly correlated coupled-
cluster method, CCSD(T)F12, in combination with the two basis set families commonly used
for the explicitly correlated coupled-cluster calculations, namely, cc-pVXZ-F12 and aug-cc-
pVXZ. The results of the reaction barriers, reaction energies, atomization energies, and en-
thalpies of formation show that the inclusion of the perturbative F12 correction significantly
reduce the basis set errors of the correlation energies. The effects of the F12 terms were least
substantial for reaction barriers (DZ F12 errors were comparable to the TZ standard errors,
i.e., an extra gain of one cardinal number) and the greatest for atomization energies and
enthalpies of formation (a gain of two cardinal numbers). Overall, the performance of the
two families was similar at the triple- and quadruple-ζ levels, with some differences observed
at the double-ζ level.

We conclude that the aug-cc-pVDZ CCSD(T)F12 model chemistry is an excellent choice for
computing electronic reaction barriers. With the aug-cc-pVDZ basis, the mean unsigned
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error is only 1.72 kJ/mol (that surpasses all model chemistries considered by Zheng et al.7)
and the maximum error is only 4.44 kJ/mol. The computational cost of the aug-cc-pVDZ
CCSD(T)F12 computation is only a small factor greater than that of the corresponding
standard aug-cc-pVDZ CCSD(T) energy computation and dramatically lower than that of
the aug-cc-pVTZ CCSD(T) energy computation (hence, the F12 approach is clearly superior
to the basis set extrapolation). While at least an order of magnitude more expensive than
routine density functional model chemistries, the aug-cc-pVDZ CCSD(T)F12 predicts the
barriers in the DBH24/08 database far more accurately, in the range of chemical accuracy.

For the electronic reaction energy calculations, the aug-cc-pVTZ CCSD(T)F12 model is shown
to be the best choice. The mean unsigned error of the CCSD(T)F12 calculations with the
aug-cc-pVTZ basis set is 1.5 kJ/mol, and its maximum unsigned error is 3.6 kJ/mol, which
are below the chemical-accuracy mark. While the computational cost of the aug-cc-pVTZ
CCSD(T)F12 calculations is significantly less than that of the aug-cc-pVQZ CCSD(T) calcu-
lations, the aug-cc-pVTZ CCSD(T)F12 model gives a more accurate prediction compared to
the aug-cc-pVQZ CCSD(T) model.

The accurate predictions of atomization energies (within the range of chemical accuracy)
require the CCSD(T)F12 method with the triple-ζ basis sets. The aug-cc-pCVTZ basis set
gives slightly smaller mean unsigned errors than the cc-pCVTZ-F12 basis set (2.13 vs 2.62
kJ/mol), but yields a slightly larger maximum unsigned error compared to the cc-pCVTZ-
F12 basis set (5.84 vs 5.16 kJ/mol). On the other hand, the more expensive quadruple-ζ
CCSD(T) calculations yield errors about three times larger than the errors of the triple-ζ
CCSD(T)F12 calculations. Increasing the basis set from triple-ζ to quadruple-ζ, the errors
of the CCSD(T)F12 calculations decrease to under the chemical-accuracy bar.

The cc-pCVDZ-F12 CCSD(T)F12 method is preferred for the calculations of enthalpies of
formation. It has a mean unsigned error of 2.17 kJ/mol and a maximum unsigned error of
5.75 kJ/mol, which are in the range of chemical accuracy. The similar accuracy requires the
CCSD(T) calculations with the cc-pCVQZ-F12 basis set, which are far more expensive. The
errors of the CCSD(T)F12 calculations for enthalpies of formation can be further reduced
to below chemical accuracy with the triple-ζ basis sets. By switching to the CCSD(T)F12

method, we reduce the computational cost for the calculations of enthalpies of formation
and improve the accuracy of the predictions at the same time.

4.5 Supporting Information

Same-spin and different-spin intermediates V , X, C, and B are obtained from basic in-
termediates V , X , C, and B given in terms of spin-free (not antisymmetrized) integrals as
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follows:∗
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)IJ
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ĪJ̄
A′M̄g

A′M̄
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A′rA

′B̄
IJ̄ + F B̄
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∗I, J denote active occupied (alpha-spin) orbitals, M , N – all occupied orbitals, A, B – all unoccupied
orbitals expressible in the orbital basis set, P , Q – all orbitals expressible in the orbital basis set, A′,
B′ – CABS orbitals, P ′, Q′, R′ – all orbitals. Bar denotes beta-spin spatial orbitals. g are the electron
repulsion integrals, r are the integrals of the bare correlation factor f(r12), [r, [T̂ , r]] are the integrals of the
[f(r12), [T̂1 + T̂2, f(r12)]] operator, F and K are the Fock and exchange operator integrals, and hJ ≡ F +K.
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QĀ
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Q̄ r

Q̄A

IJ̄

− rJ̄IA′M̄F
M̄
N̄ rA
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IJ̄
A′MF
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N rA

′N
IJ̄

)
−2
(
rJ̄IA′M̄F

M̄
P̄ ′ r

A′P ′

J̄I + rIJ̄A′MF
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P ′ rA

′P ′

IJ̄

+ rJ̄IP ĀF
P
A′rA

′Ā
J̄I + rIJ̄P̄AF

P̄
Ā′r

A′A
IJ̄

)
(4.53)

Note the appearance of mixed-case alpha-beta/beta-alpha integrals in many of these ex-
pression – these appear due to the action of the spin projectors on alpha-beta pairs. Then
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intermediates V for same- and opposite-spin cases are easily obtained:

V IJ
IJ = VIJIJ − VJIIJ (4.54)

V ĪJ̄
ĪJ̄ = V ĪJ̄ĪJ̄ − V

J̄ Ī
ĪJ̄ (4.55)

V IJ̄
IJ̄ = VIJ̄IJ̄ (4.56)

V J̄I
IJ̄ = V J̄IIJ̄ (4.57)

Intermediates C are similar:

CAB
IJ = CABIJ − CABJI (4.58)

CĀB̄
ĀB̄ = CĀB̄ĪJ̄ − C

ĀB̄
J̄ Ī (4.59)

CAB̄
IJ̄ = CAB̄IJ̄ (4.60)

CAB̄
J̄I = CAB̄J̄I (4.61)

Computation of X and B is only slightly more complicated because both subscript and
superscript (bra and ket) indices must be swapped, e.g., not only XIJ̄

IJ̄
and X J̄I

IJ̄
are needed

but also X J̄I
J̄I

; note that the latter differs from XIJ̄
IJ̄

for open-shell systems due to the sums
over the occupied orbitals. This minor issue occurs due to the spin dependence of the strong
orthogonality projector used to construct the geminals. Similar conclusions can be reached
for B.



Chapter 5

Anatomy of Molecular Properties
Evaluated with Explicitly Correlated
Electronic Wave Function Methods

5.1 Introduction

During the last few decades, rapid developments in electronic structure theory have allowed
the prediction of electronic energies to reach chemical (1 kcal/mol) or even spectroscopic (1
cm−1) accuracy. For example, the reaction barriers in the DBH24/08 database developed by
Truhlar et al.7 can be computed within chemical accuracy by using the coupled-cluster sin-
gles, doubles, and perturbative triples method (CCSD(T)), with the relatively large aug-cc-
pCV(T+d)Z basis set. On the other hand, this demonstrates that the accurate computation
of the electronic energies requires both high-level wave function models (like coupled-cluster
methods) and larger basis sets. The same statements can also be made for the prediction
of other molecular properties, such as the electric dipole moment. Although it is techni-
cally simple to compute, spectroscopic-accuracy prediction of the electric dipole moment
demands a high-level correlation method (internally contracted multireference configuration
interaction method (IC-MRCI)) combined with a large basis set.131 For example, only with
the large aug-cc-pV6Z basis set is the basis set error of the IC-MRCI dipole moment of the
water molecule at its equilibrium geometry reduced below 10−3 a.u. In this chapter, our
concern is the reduction of the basis set error in the calculations on molecular properties
other than chemical energy differences and the effectiveness of using explicitly correlated
methods to solve this problem.

The basis set problem of conventional wave function methods is due to the orbital product
nature of their building blocks, the Slater determinants, as orbital products alone cannot
efficiently describe the cusp behavior of the exact wave function at short inter-electronic dis-
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tances. Explicitly correlated methods overcome this problem by including the inter-electronic
distances (rij) explicitly in their wave function expansions. Today, the F12 (or R12) methods,
which were pioneered by Kutzelnigg,9 are the most practical explicitly correlated methods.
Moreover, F12 methods have undergone rapid development over the past decade, and become
common tools in computational chemistry for accurate prediction of ground-state energies.

Indeed, since their emergence the F12 methods have been used mainly to obtain accu-
rate molecular energies, yet they can be extended to computations of molecular properties.
Furthermore, the basis set errors of molecular properties can also be significant, thus the
extension of F12 methods to computations of molecular properties can be potentially cru-
cial for their accurate prediction. F12 calculations on molecular properties, such as dipole
moments, polarizabilities, and first and second hyperpolarizabilities, can be found in a few
studies,12–14,121 where the analytic calculation of the relaxed density matrix has been imple-
mented. At the MP2-R12 level, Kordel and co-workers12 implemented the analytic calcu-
lation of the relaxed density matrix. Later, Klopper et al.13 reported their implementation
within the MP2-F12 framework, where a Slater-type geminal was used as the correlation fac-
tor. Efforts have also been made on extensions to the CCSD method. Neiss and Hättig121

were the first to report the implementation of the CCSD(R12) response theory. Then, Yang
and Hättig developed their CCSD(R12) and CCSD(F12) response theory,14 where the more
accurate ansatz 2 of the F12 theory was employed.

In this chapter, we assess the performance of the MP2-F12 method for computing molecu-
lar properties in detail. Our approach is based on the diagonal orbital-invariant (SP) F12
ansatz.68 Moreover, approximation C of the MP2-F12 theory67 was employed in the eval-
uation, whereas previously (the less rigorous) approximation A and approximation B have
been used.12–14,121 The method was used to compute the electric dipole and quadrupole mo-
ments of BH, HF,132 H2O,131 and CO,133 for which accurate reference data can be obtained
using standard wave function methods combined with the aug-cc-pVXZ basis sets of Dun-
ning et al.18–20 In this work, we also included calculations with the cc-pVXZ-F12 series of
F12-optimized basis sets of Peterson et al.15–17 Our previous work has demonstrated that
neither one of these two basis set series is a clear winner for prediction of different relative
energies.93 Here, we compare the performance of the two basis set families for prediction of
the static electric dipole and quadrupole moments.

This chapter is organized as follows. First, in Section 5.2 we briefly review the MP2-F12
theory, and then present the formalism for the relaxed one-electron density as well as the
computational details. In Section 5.3, we first analyze different contributions to the dipole
and quadrupole moments, and then the basis set convergence of the Hartree-Fock (HF) and
MP2 correlation contributions. Furthermore, we compare the MP2 and MP2-F12 results in
this section. Finally, we summarize our findings in Section 5.4.
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5.2 Computational Methods

5.2.1 The Formalism of MP2-F12 One-Electron Density

The MP2-F12 correlation energy is obtained by minimizing the Hylleraas functional,

H(2) = 2〈Ψ(1)|V̂ |Ψ(0)〉+ 〈Ψ(1)|Ĥ(0) − E(0)|Ψ(1)〉, (5.1)

where the zeroth-order wave function is the HF determinant, and the first-order wave function
is comprised of standard and geminal double excitations. In this work, the diagonal orbital-
invariant (SP) ansatz of Ten-no68 is adopted. Thus, the first-order wave function is written
as

Ψ
(1)
MP-R12 =

1

4
tijabã

ab
ij |Ψ(0)〉+

1

4
R̄ij
αβã

αβ
ij |Ψ(0)〉, (5.2)

where tijab are conventional MP1 amplitudes, and R̄ij
αβ are the antisymmetrized integrals of

the projected geminal correlation factor, f(r12):

R̄ij
αβ = 〈αβ|Q̂12f(r12)|ij〉 − 〈αβ|Q̂12f(r12)|ji〉. (5.3)

Here, the projector Q̂12 is defined as

Q̂12 = (1− Ô1)(1− Ô2)− V̂1V̂2, (5.4)

where Ô and V̂ are the projectors on the occupied and virtual orbitals. It ensures that the
geminal functions are orthogonal to both the reference and standard double excitations.66

The detailed explanation for the notation here can be found in Appendix A.

In the SP approach, the geminal correlation factor is determined to satisfy the singlet and
triplet coalescence conditions.68 Thus, the spin-adapted geminal correlation factor can be
written as93

f(r12) ≡(C0P̂0 + C1P̂1)γ(r12), (5.5)

where C0 = 1/2, C1 = 1/4, and P̂0 and P̂1 are the singlet and triplet spin projectors,
respectively. These spin projectors ensure that the proper coefficients are selected for the
different pair functions. Here, γ(r12) is the standard exponential correlation factor introduced
by Ten-no.71 In this work, it is approximated with an expansion of Gaussian geminals:73

γ(r12) ≡ −lc exp(−r12/lc) ≈
Ng∑
i

ci exp(−αir2
12), (5.6)

where lc (∼ 1 a0) is a correlation length scale and depends empirically on the orbital basis
set.
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A one-electron property of a molecule can be defined as its response to an external pertur-
bation (λ).134 The energy of a molecule in the presence of such a perturbation is expressed
as

E(λ) = E(λ = 0) + λ
dE

dλ

∣∣∣∣
λ=0

+
1

2
λ2d

2E

dλ2

∣∣∣∣
λ=0

+ · · · . (5.7)

The corresponding one-electron property thus can be calculated as the first derivative of the
electronic energy with respect to the external perturbation. The dipole moment (µ), for
example, is obtained by differentiating the energy with respect to an external electric field
(F):

µ = −dE
dF

∣∣∣∣
F=0

= Dκλ〈κ|Ô|λ〉, (5.8)

where 〈κ|Ô|λ〉 are integrals over the operator Ô associated with the property O, and Dκλ

is the relaxed one-electron density. Without considering the orbital-relaxation effects, the
(unrelaxed) one-electron density of MP2-F12 is obtained simply from 〈ΨMP2-F12|aκλ|ΨMP2-F12〉.
The detailed expressions for the resulting matrices are:

DMP2-F12
ij =

1

2
t̃ikabt̃

ab
jk +

1

2
R̄ik
αβR̄

αβ
jk , (5.9)

DMP2-F12
ab =

1

2
t̃acij t̃

ij
bc +

1

2
R̄ac′

ij R̄
ij
bc′ , (5.10)

DMP2-F12
a′b =

1

2
R̄a′c
ij t̃

ij
bc +

1

2
R̄a′c′

ij R̄ij
bc′ , (5.11)

DMP2-F12
a′b′ =

1

2
R̄a′γ
ij R̄

ij
b′γ. (5.12)

Here, t̃ijab are modified amplitudes defined as t̃ijab = tijab + Aijab, where the intermediate A is
written as

Aijab =
Cij
ab

F i
i + F j

j − F a
a − F b

b

(5.13)

with

Cij
ab =

1

2

(
Fα
a R̄

ij
αb + Fα

b R̄
ij
aα

)
. (5.14)

If we assume the extended Brillouin condition (EBC), Cij
ab are zero; thus, the intermediate A

vanishes. As a result, t̃ijab become the standard MP1 amplitudes. Hence, the EBC assumption
eliminates the majority of the coupling terms that are comprised of both MP2 and F12
contributions. Then, the only remaining coupling contributions, R̄a′c

ij t
ij
bc, are from the first

term in Eq. 5.11. Without these contributions, we obtain the coupling-free, (unrelaxed)
one-electron density.

To obtain relaxed one-electron properties, the response of the Hartree-Fock orbitals to the
perturbation has to be taken into account. This is achieved via solving the coupled-perturbed
Hartree-Fock (CPHF), or Z-vector equations,

κ̄bn (δabδmn(εb − εn) + Abnam) = Xam, (5.15)
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where κ̄bn are Lagrange multipliers, and Abnam = 4〈ba|nm〉 − 〈ba|mn〉 − 〈bn|am〉 for closed-
shell systems. The right-hand side of the CPHF equations, Xam, is obtained by differentiating
the MP2-F12 Hylleraas functional with respect to the orbital rotation parameters. In our
work, the Hylleraas functional with the diagonal SP ansatz is expressed as

H(2) =
1

4

(
faa + f bb − f ii − f

j
j

)
t̃abij t̃

ij
ab+

1

2

(
ḡijab + Cij

ab

)
t̃abij +V ij

ij +
1

2
Bij
ij−

1

2

(
F i
i + F j

j

)
X ij
ij , (5.16)

where intermediates V , B, and X familiar from the MP2-F12 formalism are defined as:

V ij
ij =

1

2
R̄ij
αβ ḡ

αβ
ij , (5.17)

Bij
ij = R̄ij

αβF
β
γ R̄

αγ
ij , (5.18)

X ij
ij =

1

2
R̄ij
αβR̄

αβ
ij . (5.19)

By differentiatingH(2) in the above expression, we obtained two types of components forXam:
contributions only involving active (non-frozen) occupied orbitals (Xai) and contributions
from all occupied orbitals (X∗am),

Xai = 2

(
−1

2

(
ḡakbc + Cak

bc

)
t̃bcil − V ak

ik − V ik
ak +

(
F i
i + F o

o

)
Xak
ik −Bak

ik

)
, (5.20)

X∗am = 2

(
ḡalmkD

k
l − ḡaβmαDα

β +
1

2

(
ḡklmb + F a′

m R̄
kl
a′b + F a′

b R̄
kl
ma′

)
t̃abkl +

1

2
R̄kl
mc′ ḡ
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kl +
1

2
R̄kl
ac′ ḡ
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kl

−
(
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k + F l

l

) 1

2
R̄kl
mb′R̄

ab′

kl +
1

2

(
R̄kl
a′b′F

a′

m + R̄kl
ma′F

b′

a′

)
R̄ab′

kl +
1

2
R̄kl
mc′F

a
β R̄

βc′

kl

)
. (5.21)

Similar to the (unrelaxed) one-electron density, the coupling-free Xam is obtained by neglect-
ing terms that contain contributions from both geminal integrals and modified amplitudes
(t̃abij ).

In our evaluation, the infinite-range sum in the intermediates V , C, and X was approximated
with finite sums over the complementary auxiliary basis set (CABS).66 For the intermediate
B, approximation C of Kedzuch et al.67 as well as the CABS approach66 were used. After
integrating over the spin degrees of freedom, the spin-free expressions for these intermediates
were obtained. For example,

1

2
R̄kl
Mc′ ḡ

Ac′

kl =
C0 + 3C1

2
rKLMC′gAC

′

KL +
C0 − 3C1

2
rKLC′Mg

AC′

KL , (5.22)

1

2
R̄kl
a′c′F

a′

M R̄
Ac′

kl =
C2

0 + 3C2
1

2
rKLA′C′FA′

M rAC
′

KL +
C2

0 − 3C2
1

2
rKLC′A′FA′

M rAC
′

KL , (5.23)

where the r integrals are the two-electron integrals of the bare correlation factor, γ(r12).
The procedure for integrating over the spin coordinates is the same as the one described in
Section 4.2.1, except we only considered the closed-shell reference state in this work.
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In addition, we included a correction to the Hartree-Fock wave function that is obtained from
single excitations into the CABS with perturbation theory (called as “CABS singles”).80 As
a result, the CABS singles correction contributes to the (unrelaxed) one-electron density:

DCABS
mn = −tmα tαn, (5.24)

DCABS
αβ = −tαmtmβ , (5.25)

DCABS
mα = −tmα , (5.26)

where tαi are CABS singles amplitudes. Following the same procedure described previously,
the CABS singles contribution to the right-hand side of the CPHF equations can be obtained:

XCABS
am = 2

(
−F a

αt
α
m + F n

mt
a
n − ḡanmαtαn − ḡaαmntnα + ḡan1

mn2
DCABS
n1n2

+ Fα
mD

CABS
aα

−ḡaαmβDCABS
αβ

)
, (5.27)

with which we can solve the the CPHF equations for the CABS singles correction and obtain
its orbital response contribution.

5.2.2 Computational Details

The dipole operator can be expressed as

µα =
∑
A

QArAα −
∑
i

riα, (5.28)

where α represents a Cartesian coordinate (x, y, or z), Q is the nuclear charge, r represents
a position vector, and indices A and i label the nuclei and electrons, respectively. For the
electric quadrupole moment, we used the traceless moment operator defined by Bucking-
ham:135

Θαβ =
1

2

∑
A

ZA
(
3rAαrAβ − r2

Aδαβ
)
− 1

2

∑
i

(
3riαriβ − r2

i δαβ
)
. (5.29)

where β also represents a Cartesian coordinate. For the four molecules studied, there is only
one non-zero component of the dipole moment, µz, whereas all the diagonal components
of the traceless quadrupole moment, Θxx, Θyy, and Θzz, are non-zero. Moreover, in the
linear molecules the diagonal components of the quadrupole moment have the following
relationship: Θxx = Θyy = −1/2Θzz. Hence, we are only concerned with µz and Θzz for BH,
CO, and HF. For the nonlinear H2O molecule, Θxx and Θyy are also studied in addition to
µz and Θzz.

The molecular geometries of BH, HF, H2O, and CO were obtained from the literature.131–133

We employed two orbital basis set series: the standard aug-cc-pVXZ family (X = D, T,
Q, 5) designed by Dunning et al.18–20 for computations with standard correlated methods,
and the cc-pVXZ-F12 family (X = D, T, Q) designed by Peterson and co-workers15 specifi-
cally for F12 methods. The corresponding complementary auxiliary basis sets (CABS) were
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constructed by using the CABS+ approach66 from the aug-cc-pVXZ/OptRI84 and cc-pVXZ-
F12/OptRI basis sets.16 In our F12 calculations, the recommended correlation length scales15

were used, and the correlation factors were expanded in terms of six Gaussian geminals.3 In
addition, the evaluation of all post-Hartree-Fock quantities utilized the robust density fit-
ting.118 The aug-cc-pV(X+1)Z-RI and cc-pV(X+1)Z-RI basis sets were used for the density
fitting in the aug-cc-pVXZ and cc-pVXZ-F12 calculations, respectively, where X is the car-
dinal number of the corresponding orbital basis. All calculations were performed with the
developmental version of the Massively Parallel Quantum Chemistry (MPQC) package101

(freely available under the GPL license at http://www.mpqc.org/).

5.3 Results and Discussions

5.3.1 Direct and Orbital Response Contributions to Dipole and
Quadrupole Moments

We first investigated the direct (unrelaxed) one-electron density (Dur) and orbital response
(Dor) contributions to the dipole and quadrupole moment components, µz and Θzz, within
the CABS singles (E(2)S), MP2 correlation, and F12 correlation corrections. In addition, we
also studied the effects of the coupling terms in the F12 correction. In these calculations,
the aug-cc-pVXZ basis sets (X = D, T, Q) were used, and the corresponding results are
presented in Figure 5.1 and 5.2.

We found that the CABS singles correction to the dipole moment is only significant at
the double-ζ level for BH, HF, and H2O, whereas at the triple- and quadruple-ζ levels it
is very small. For CO, even the double-ζ value of the CABS singles correction is small
(-0.00133 a.u.). Nevertheless, for all four molecules the direct density contribution is the
major component in the double-ζ CABS singles correction, whereas the orbital response
contribution ranges from -0.002 to -0.001 a.u. On the contrary, the orbital response effects
are much more important in the MP2 correlation correction. In fact, the direct and orbital
response contributions are both significant in the MP2 dipole moment correction. Lastly,
we found the direct density contributions from the F12 corrections are negligible at all basis
set levels. Even at the double-ζ level, their absolute values are less than 0.001 a.u. Hence,
the F12 contributions result mostly from the orbital response effects. The inclusion of the
coupling appears to have a small but not always negligible effect on the F12 calculations. For
CO, for example, the coupling contributes 0.00367 a.u. to the total F12 correction (-0.0076
a.u.).

Similar to the dipole calculations, we found that the orbital response contribution is a rela-
tively small portion of the CABS singles correction to the quadrupole moment for the linear
molecules (see Figure 5.2(a), (b), and (d)). For HF and CO, we found the double-ζ CABS
singles correction appears to be similar to or larger compared to the MP2 correlation correc-
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Figure 5.1: The (unrelaxed) one-electron density (Dur) and orbital response (Dor) contribu-
tions (a.u.) from the CABS singles and correlation corrections to µz in the test molecules.
F12C and F12 refer to the F12 correlation corrections with and without the coupling from
the MP2 and F12 corrections. The aug-cc-pVXZ basis sets (X = D, T, Q) were used in these
calculations.

tion. This suggests that the double-ζ CABS singles correction may be more important for
quadrupole moment calculations than dipole moment calculations. In the MP2 correlation
correction to Θzz, the orbital response contribution increases with the size of the basis set,
and it becomes much larger than the direct density contribution at the triple- and quadruple-
ζ levels for BH and CO. For HF, orbital response effects at the double-ζ level are almost
negligible (on the order of 0.0001 a.u.), but their contribution becomes comparable to the
direct density contribution at the quadruple-ζ level. Again, for these linear molecules most
of the F12 correlation contributions come from the orbital response effects (> 90% for F12
and > 70% for F12C).

For H2O, observations, similar to Θzz of the HF molecule, can be made for the z2 component
of the quadrupole moment (Figure 5.2(c)): (1) the double-ζ CABS singles correction is
significant and much larger than the corresponding MP2 correlation correction (-0.01027 vs.
-0.00167 a.u.), and the orbital response effects are negligible for the CABS singles correction;
(2) the orbital response effects on the MP2 correlation correction are still very small at the



Jinmei Zhang Chapter 5. Anatomy of Molecular Properties Evaluated with MP2-F12 74

EH2LS

MP2

F12 F12C

D T Q D T Q D T Q D T Q

-0.016

0.034

0.084

0.134

0.184

HaL BH

EH2LS

MP2

F12 F12C

D T Q D T Q D T Q D T Q

-0.0145

-0.0055

0.0035

0.0125

HbL HF

EH2LS
MP2 F12 F12C

D T Q D T Q D T Q D T Q

-0.0104

-0.0074

-0.0044

-0.0014

0.0016

EH2LS

MP2

F12 F12C

D T Q D T Q D T Q D T Q

-0.023

-0.003

0.017

0.037

0.057

HdL COHcLH2 O

QzzHD
urL

QzzHD
orL

Figure 5.2: The (unrelaxed) one-electron density (Dur) and orbital response (Dor) contribu-
tions (a.u.) from the CABS singles and correlation corrections to Θzz in the test molecules.
F12C and F12 refer to the F12 correlation corrections with and without the coupling from
the MP2 and F12 corrections. The aug-cc-pVXZ basis sets (X = D, T, Q) were used in these
calculations.

double-ζ level (0.00011 a.u.), but become comparable to the the direct density contribution
at higher levels; (3) in the F12 contributions, the orbital response effects dominate. On
the other hand, the behaviors of the x2 and y2 components resemble those of Θzz for BH.
The exceptions here are their F12 correlation corrections (see the Supporting Information
in this chapter), which do not decrease monotonically with respect to the basis set size.
Nevertheless, the majority of the F12 contributions for Θxx and Θyy still results from the
orbital response effects.

5.3.2 Basis Set Convergence of HF and MP2 Correlation Contri-
butions to the z Component of the Dipole Moment

To investigate the basis set convergence of various contributions to the dipole moment com-
ponent, µz, we used two basis set families: aug-cc-pVXZ and cc-pVXZ-F12. The HF/aug-
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Figure 5.3: Basis set convergence of the HF and HF(2)S contributions (a.u.) to µz for the
test molecules. HF(2)S refers to the Hartree-Fock contribution with the inclusion of the
CABS singles correction.

cc-pV6Z values were used as the Hartree-Fock basis set limits, and the basis set limits for the
MP2 correlation corrections were estimated using the standard X−3 extrapolation formula33

from the aug-cc-pVQZ and aug-cc-pV5Z values.

The basis set convergence of the HF and HF(2)S (HF with the CABS singles correction)
contributions to the dipole moments of the four molecules are shown in Figure 5.3. For BH,
HF, and CO, the CABS singles correction reduces the HF basis set errors considerably at
the double- and triple-ζ levels. With the aug-cc-pVTZ basis set, the HF(2)S calculations
yield values very close to the basis set limits. For H2O, even though we saw a relatively
fast convergence of the HF contribution to the basis set limit, the HF basis set errors are
still large at the double-ζ level (see Figure 5.3(c)). Yet the error approaches zero with the
HF(2)S/aug-cc-pVDZ calculation. In general, the aug-cc-pVXZ family leads to a better
convergence to the basis set limit in the dipole calculations. The exceptions are the cc-
pVDZ-F12 HF(2)S dipole moments for BH and CO, which are closer to the basis set limits
than the corresponding aug-cc-pVDZ values.

In Figure 5.4, we present the basis set convergence of various correlation contributions to the
z component of the dipole moment for the four molecules, where MP2-F12C and MP2-F12
refer to the F12-corrected correlation contributions with and without the coupling from the
MP2 and F12 corrections. As expected, the MP2 correlation contribution from the aug-
cc-pVXZ calculations converges very slowly to the basis set limit, but the F12 correction
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Figure 5.4: Basis set convergence of various correlation contributions (a.u.) to µz for the
test molecules. MP2-F12C and MP2-F12 refer to the F12-corrected correlation contributions
with and without the coupling from the MP2 and F12 corrections.

significantly improves the basis set convergence. For BH, H2O, and CO, the results from the
MP2-F12C/aug-cc-pVDZ calculations are already very close to the basis set limits, and are
even better than the MP2/aug-cc-pV5Z values. Moreover, the coupling has a negligible effect
on the aug-cc-pVXZ calculations of the BH dipole moment: the MP2-F12 values are almost
identical to the corresponding MP2-F12C values. On the other hand, for H2O and CO the
MP2-F12 calculations yield larger errors than the MP2-F12C calculations at the double-ζ
level, but the difference between the two quickly diminishes as the basis set size increases.
In contrast to calculations on other molecules, the MP2-F12/aug-cc-pVXZ calculations on
the HF molecule give values that converge faster to the basis set limit. Moreover, the MP2-
F12/aug-cc-pVDZ value for HF is already very close to the basis set limit.

Within the MP2-F12C calculations, we found the aug-cc-pVXZ basis sets give noticeably
better results than the cc-pVXZ-F12 basis sets at the double-ζ level, but their difference
becomes much smaller at the triple- and quadruple-ζ levels. A similar conclusion can also
be drawn for the MP2-F12 calculations of the BH, HF, and H2O dipole moments. For
CO, however, the combination of MP2-F12 with cc-pVXZ-F12 gives a better result than
the MP2-F12/aug-cc-pVXZ combination: the MP2-F12/cc-pVDZ-F12 value is already very
close to the basis set limit. Nevertheless, the MP2-F12C calculations with the aug-cc-pVXZ
basis sets give the most consistent and accurate results, especially at the double-ζ level.
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Table 5.1: The basis set errors of the MP2 correlation contributions to µz (a.u.) of BH, HF,
and H2O with the cc-pVXZ-F12 and modified basis sets.

Molecule Method
cc-pVXZ-F12 (aug-)cc-pVXZ-F12a

X = D X = T X = Q X = D X = T X = Q

BH
MP2-F12C −0.00293 −0.00128 0.00016 −0.00170 −0.00096 0.00019
MP2-F12 −0.00473 −0.00091 0.00009 −0.00277 −0.00043 0.00017

HF
MP2-F12C 0.00324 0.00121 0.00083 0.00008 0.00056 0.00062
MP2-F12 0.00411 0.00128 0.00085 0.00128 0.00072 0.00070

H2O
MP2-F12C 0.00997 0.00349 0.00180 0.00164 0.00030 0.00040
MP2-F12 0.01091 0.00349 0.00179 0.00331 0.00056 0.00048

aThe cc-pVXZ-F12 basis sets were used for non-hydrogen atoms, while the aug-cc-pVXZ basis sets were used

for hydrogen atoms.

Although this is a small test set, we were surprised with the overall worse performance of
the cc-pVXZ-F12 series as compared to the aug-cc-pVXZ series. It is especially obvious for
the dipole calculations on H2O, which contains two hydrogen atoms. At the double-ζ level,
the differences between the F12-corrected correlation values with the two basis set series are
around 0.01 a.u. for H2O, whereas the corresponding differences for the other molecules are
around or less than 0.005 a.u. We know the cc-pVXZ-F12 basis sets for non-hydrogen atoms
is considerably larger than the corresponding aug-cc-pVXZ basis sets, but for the hydrogen
atom they are smaller when X = T, Q (cc-pVTZ-F12 has one less d function than aug-cc-
pVTZ, and cc-pVQZ-F12 has one less d and f functions comparing to aug-cc-pVQZ). Hence,
it is possible that the relatively poorer performance of the cc-pVXZ-F12 basis sets for dipole
calculations is due to their hydrogen basis functions. To investigate the effects of hydrogen
basis functions on the dipole calculations, we performed the cc-pVXZ-F12 calculations with
the aug-cc-pVXZ basis sets for hydrogen atoms (labeled as (aug-)cc-pVXZ-F12 in Table 5.1).
We found that the basis set errors of the calculations do become significantly smaller (see
Table 5.1), and are very close to the aug-cc-pVXZ results especially at the double-ζ level
(see the Supporting Information for the comparison of the three). For H2O, the basis set
errors of the correlation contributions are reduced by one order of magnitude when using
the aug-cc-pVXZ basis sets for the hydrogen atoms. The results here suggest that the cc-
pVXZ-F12 basis sets for hydrogen may need to be revisited as they seem to be the cause of
the relatively poor results for the dipole moment.
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5.3.3 Basis Set Convergence of HF and MP2 Correlation Contri-
butions to the z2 Component of the Quadrupole Moment

Following the same approach, we studied the basis set convergence of the HF and correlation
contributions to the z2 component of the quadrupole moment for the four test molecules.
Thus, the Hartree-Fock basis set limits were also the HF/aug-cc-pV6Z values, while the
basis set limits for the MP2 correlation contributions were the extrapolated values from the
aug-cc-pVQZ and aug-cc-pV5Z results using the standard X−3 formula.33
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Figure 5.5: Basis set convergence of the HF and HF(2)S contributions (a.u.) to Θzz for
the test molecules. HF(2)S refers to the Hartree-Fock contribution with the inclusion of the
CABS singles correction.

Figure 5.5 shows the basis set convergence of the HF and HF(2)S contributions to Θzz for
the four molecules. For BH and H2O, the CABS singles correction significantly reduces the
HF basis set errors in the aug-cc-pVDZ calculations, and the resultant HF(2)S values are
near the basis set limits. Compared to the aug-cc-pVXZ series, the use of the cc-pVXZ-
F12 basis sets leads to worse results in the HF(2)S calculations for these two molecules.
However, the opposite trend is observed for the HF(2)S calculation on the HF molecule,
where cc-pVDZ-F12 outperforms aug-cc-pVDZ and gives a result very close to the basis set
limit. In the Θzz calculations of CO, the HF(2)S method with the two basis set families
yields almost identical results, and the resultant basis set errors are already close to zero
at the double-ζ level. Despite the slightly worse performance of the double-ζ calculation on
the HF molecule, the use of the aug-cc-pVXZ family in the HF(2)S calculations leads to a
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Figure 5.6: Basis set convergence of various correlation contributions (a.u.) to Θzz for the
test molecules. MP2-F12C and MP2-F12 refer to the MP2 correlation contributions with
and without the coupling from the MP2 and F12 corrections.

more consistent behavior of convergence compared to that of the cc-pVXZ-F12 family; this
is seemingly related to the inconsistent behavior of the underlying HF/cc-pVXZ-F12 results.

The basis set convergence of the MP2 and F12-corrected correlation contributions to the
z2 component of the quadrupole moment for the test molecules are presented in Figure
5.6. For BH and CO, the basis set convergence of various correlation contributions to Θzz

resembles that of the corresponding µz: (1) the basis set convergence of the MP2 correlation
contributions is slow, but the F12 correction significantly accelerates the convergence; (2) the
two basis set families generate very different results at the double-ζ level (the discrepancy
is on the order of 0.01 a.u.), but the difference diminishes as we increase the basis set size.
Nevertheless, the aug-cc-pVTZ basis set is needed in the MP2-F12C calculations to obtain
values near the basis set limits. Similarly, the aug-cc-pVTZ basis set is also required for
the MP2-F12C or MP2-F12 calculations on HF and H2O to approach the basis set limits
(within 0.001 a.u.). Although the cc-pVXZ-F12 series gives smaller errors than the aug-cc-
pVXZ series in the double-ζ F12 calculations on these two molecules, they give less desirable
results in the triple- and quadruple-ζ calculations. For example, the cc-pVDZ-F12 values of
the F12-corrected correlation contributions to Θzz for H2O are very close to the basis set
limit, whereas the corresponding TZ and QZ values are ∼ 0.001 a.u. lower than the basis
set limit. This is mostly due to the poor convergence of the underlying MP2/cc-pVXZ-F12
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results. In addition, the MP2-F12C and MP2-F12 calculations of Θzz seem to give similar
results for all four molecules, and the only obvious discrepancy is between the double-ζ
calculations on CO using these two methods.

Similar to the dipole calculations, we also performed the cc-pVXZ-F12 calculations of Θzz

with the aug-cc-pVXZ basis sets for hydrogen atoms. For the linear molecules (BH and
HF), we found that the basis set errors of the correlation contributions become smaller
(0.001 ∼ 0.003 a.u.) and close to the aug-cc-pVXZ results (see the figures in the Supporting
Information). For H2O, the convergence of the correlation corrections to Θxx and Θyy is also
much improved. However, the correlation corrections to Θzz still converge to a value much
lower than the basis set limit. Since there are three Cartesian contributions, 〈x2〉, 〈y2〉, and
〈z2〉 (also called second moment of charge), to the electronic parts of Θxx, Θyy, and Θzz (see
Eq. 5.29), their different convergence behaviors may be due to the inconsistent convergence
of those Cartesian contributions.

Table 5.2: The MP2 correlation contributions to the components of the H2O quadrupole
moment (〈α2〉 in a.u.) with different basis sets.

〈α2〉 X
aug-cc-pVXZ cc-pVXZ-F12 (aug-)cc-pVXZ-F12a

MP2 MP2-F12C MP2 MP2-F12C MP2 MP2-F12C

〈x2〉
D −0.24053 −0.17447 −0.21292 −0.17820 −0.21775 −0.17952
T −0.21199 −0.18562 −0.20114 −0.17940 −0.20277 −0.18313
Q −0.19849 −0.18654 −0.19281 −0.18216 −0.19471 −0.18482
X−3 b −0.18724

〈y2〉
D −0.19306 −0.12443 −0.17477 −0.12263 −0.17542 −0.12420
T −0.15300 −0.12082 −0.14940 −0.12201 −0.14671 −0.11996
Q −0.13499 −0.12013 −0.13523 −0.12122 −0.13297 −0.11935
X−3 −0.11963

〈z2〉
D −0.21846 −0.15194 −0.20122 −0.15658 −0.20269 −0.15569
T −0.18780 −0.15942 −0.18275 −0.15838 −0.18401 −0.16112
Q −0.17333 −0.16015 −0.17231 −0.15971 −0.17298 −0.16116
X−3 −0.16014

aThe cc-pVXZ-F12 basis sets were used for the oxygen atom, while the aug-cc-pVXZ basis sets were used for

the hydrogen atoms. bThe value was obtained using the standard X−3 extrapolation with the aug-cc-pVQZ

and aug-cc-pV5Z values.

To clarify the issue above, we computed 〈x2〉, 〈y2〉, and 〈z2〉 of H2O with the aug-cc-pVXZ,
cc-pVXZ-F12, and (aug-)cc-pVXZ-F12 basis sets. The results are presented in Table 5.2.
We found that the convergences of the MP2 values are consistent: they become smaller
as the basis set size increases, and slowly approach the basis set limits from below. On
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the other hand, the MP2-F12C values of 〈x2〉 and 〈z2〉 with aug-cc-pVXZ and cc-pVXZ-
F12 decrease with the basis set size, and thus converge to the basis set limit from above,
whereas the 〈y2〉 values approach the basis set limit from the opposite direction. Although
the MP2-F12C values of each Cartesian contributions converge relatively fast to the basis
set limits, their incoherent convergence behaviors could lead to an undesired convergence for
the quadrupole moments. This inconsistency of convergence among the 〈x2〉, 〈y2〉, and 〈z2〉
values is especially obvious for the results from the (aug-)cc-pVXZ-F12 calculations. Despite
the fact that the basis set convergence of the MP2-F12C/(aug-)cc-pVXZ-F12 values closely
follows those of the corresponding aug-cc-pVXZ results, it does not always converge to the
right value. This is probably more obvious from the plots in the Supporting Information
(the MP2-F12 results are also included). In addition, we noticed that the 〈x2〉, 〈y2〉, and 〈z2〉
values from the MP2-F12C/cc-pVXZ-F12 calculations are actually above the basis set limits
at all basis set levels, even though the corresponding Θzz values converge to a value below
the basis set limit. Since H2O is a nonlinear molecule, the results here indicate that the
calculations of the quadrupole moments for nonlinear molecules may be more challenging,
yet more tests need to be done.

5.3.4 Comparison of Dipole and Quadrupole Moment Compo-
nents, µz and Θzz, from MP2 and F12 Calculations

In Table 5.3 and 5.4, we list the deviations of the double-ζ µz values and triple-ζ Θzz

values from the F12 calculations with respect to the MP2 basis set limits, which are the
sums of the HF and MP2 correlation basis set limits. For the calculations of µz, the MP2-
F12C/aug-cc-pVDZ method with the CABS singles correction yields errors around 0.001
a.u. On the other hand, the errors from the MP2-F12C/cc-pVDZ-F12 and MP2-F12/aug-
cc-pVXZ (or cc-pVDZ-F12) calculations can be much larger for one or two molecules. In the
calculations of Θzz, the errors for BH and CO can be reduced to below 0.001 a.u. with the
MP2-F12C/aug-cc-pVTZ model. For HF and H2O, without the CABS singles correction the
errors of MP2-F12C/aug-cc-pVTZ calculations are significantly reduced, and approach 0.001
a.u. Compared with MP2-F12C, MP2-F12 with aug-cc-pVTZ generates slightly larger errors
(except for BH). For the Θzz calculations with both the F12 models, the cc-pVXZ-F12 basis
sets give much larger errors than the aug-cc-pVXZ basis sets in most cases (H2O is the only
exception). The results for the x2 and y2 components of the H2O quadrupole moment differ
slightly from those of the z2 component, but they do not provide additional insights (see
the Supporting Information). Thus, for the dipole and quadrupole calculations we conclude
that the MP2-F12C method combined with the aug-cc-pVXZ basis sets is the most reliable
model, and the CABS singles correction is needed at the double-ζ level but not a necessity
at the triple-ζ level.

Lastly, we investigated how the quality of the CABS influences the caluations of dipole and
quadrupole moments. Hence, we performed the aug-cc-pVXZ (X = D, T) calculations using
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Table 5.3: The errors of the double-ζ F12 calculations for µz (a.u.) with respect to the
estimated basis set limits.a

Method Basis BH HF H2O CO
MP2-F12C

b aug-cc-pVDZ −0.00168 −0.00121 0.00053 0.00107
cc-pVDZ-F12 −0.00179c 0.00672 0.01703 0.00368

MP2-F12b aug-cc-pVDZ −0.00194 0.00058 0.00222 −0.00260d

cc-pVDZ-F12 −0.00359e 0.00759 0.017967 0.00191

Basis set limit
MP2 — 0.63836 0.71238 0.73363 0.10667

aThe basis set limits were estimated as the sum of the HF/aug-cc-pV6Z value and the extrapolated MP2

correlation contribution from the aug-cc-pVQZ and aug-cc-pV5Z values. bThe CABS singles correction was

included in the calculations. cThe corresponding value without the CABS singles correction is much smaller

(0.00001 a.u.). dThe value without the CABS singles correction is -0.00127 a.u. eThe value without the

CABS singles correction is -0.00179 a.u.

Table 5.4: The errors of the triple-ζ F12 calculations for Θzz (a.u.) with respect to the
estimated basis set limits.a

Method Basis BH HF H2O CO
MP2-F12C

b aug-cc-pVTZ −0.00085 −0.00207c 0.00222e 0.00041
cc-pVTZ-F12 −0.00591 −0.00842 −0.00174 −0.00345

MP2-F12b aug-cc-pVTZ 0.00040 −0.00215d 0.00254f 0.00168
cc-pVTZ-F12 −0.00625 −0.00846 −0.00173 −0.00390

Basis set limit
MP2 — −2.49501 1.73671 −0.10918 −1.48859

aThe basis set limits were estimated as the sum of the HF/aug-cc-pV6Z value and the extrapolated MP2

correlation contribution from the aug-cc-pVQZ and aug-cc-pV5Z values. bThe CABS singles correction was

included in the calculations. cThe corresponding value without the CABS singles correction is much smaller

(0.00026 a.u.). dThe value without the CABS singles correction is 0.00018 a.u. eThe corresponding value

without the CABS singles correction is much smaller (0.00134 a.u.). fThe value without the CABS singles

correction is 0.00166 a.u.
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Table 5.5: The variations of the CABS singles and F12 corrections to µz (a.u.) from the
aug-cc-pVXZ calculations using different CABS with respect to the values using aug-cc-
pVXZ-CABS.

Molecule X
(uc)aug-cc-pVQZ cc-pVXZ-F12-CABS

E(2)s F12C
a F12 E(2)s F12C

a F12

BH
2 0.00161 0.00016 0.00004 −0.00054 0.00001 −0.00002
3 0.00022 0.00005 0.00010 −0.00034 −0.00002 −0.00000

HF
2 −0.00001 0.00012 0.00019 −0.00164 −0.00019 −0.00015
3 0.00021 0.00011 0.00020 −0.00157 0.00003 0.00003

H2O
2 0.00066 0.00016 0.00020 −0.00179 −0.00005 0.00002
3 0.00052 0.00013 0.00025 −0.00149 0.00004 0.00006

CO
2 −0.00131 0.00031 −0.00013 −0.00012 −0.00082 −0.00074
3 −0.00026 −0.00008 −0.00019 0.00022 −0.00006 −0.00005

aF12C refers to the F12 correlation contribution with the coupling from the MP2 and F12 corrections.

the large uncontracted aug-cc-pVQZ and cc-pVXZ-F12-CABS (the corresponding CABS for
cc-pVXZ-F12) basis sets as the CABS. In Table 5.5, we list the variations of the CABS
singles and F12 corrections to µz from the calculations using these two CABSs, where we
used the values from the calculations utilizing the regular aug-cc-pVXZ-CABS basis sets
(the corresponding CABS for aug-cc-pVXZ) as the reference. We found that the results
from the calculations with the different CABSs are very similar. The variation of the CABS
singles correction contribution is close to or smaller than 0.001 a.u. For the F12 corrections
(F12C and F12) to µz, the effect of the choice of the CABS is even smaller: the difference
among results using different CABSs is on the order of 0.0001 a.u. For the calculations of
Θzz (Table 5.6), the choice of the CABS has a slightly larger influence on the CABS singles
correction at the double-ζ level especially for the calculations using cc-pVDZ-F12-CABS,
but the variation of the CABS singles correction with the different CABSs is again reduced
to or smaller than 0.001 a.u. with the triple-ζ basis set. Similar observations can be made
to the F12 corrections (F12C and F12) to Θzz, and their variation with the different CABSs
is very small (≤ 0.0001 a.u.). Thus, we conclude that the default CABS is sufficient for the
dipole moment calculations and triple- or higher-ζ quadrupole calculations.
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Table 5.6: The variations of the CABS singles and F12 corrections to Θzz (a.u.) from the
aug-cc-pVXZ calculations using different CABS with respect to the values using aug-cc-
pVXZ-CABS.

Molecule X
(uc)aug-cc-pVQZ cc-pVXZ-F12-CABS

E(2)s F12C
a F12 E(2)s F12C

a F12

BH
2 0.00594 −0.00034 −0.00025 −0.00704 0.00114 0.00106
3 0.00106 0.00011 0.00019 0.00164 −0.00008 −0.00008

HF
2 0.00808 0.00001 −0.00018 0.01192 −0.00077 −0.00075
3 −0.00046 0.00008 0.00000 −0.00215 0.00006 0.00009

H2O
2 0.00230 −0.00014 −0.00010 0.00381 −0.00033 −0.00028
3 −0.00232 −0.00001 −0.00004 −0.00281 0.00003 0.00003

CO
2 −0.00536 −0.00100 −0.00037 0.00449 0.00111 0.00126
3 −0.00160 0.00002 −0.00015 0.00009 0.00004 0.00003

aF12C refers to the F12 correlation contribution with the coupling from the MP2 and F12 corrections.

5.3.5 Effects of Core and Core-Valence Electron Correlations on
Dipole and Quadrupole Moment Components, µz and Θzz

In the dipole and quadrupole calculations above, we only included the valence electron corre-
lations. We expect the core and core-valence electron correlations to be small since the dipole
and quadrupole moment operators depend on ri linearly and quadratically, respectively. To
investigate the influence of the core and core-valence correlation effects, we compared the
results from the MP2/aug-cc-pCVXZ (X = D, T, Q) calculations with and without a frozen
core (Table 5.7). We found that the core and core-valence correlation effects on the calcu-
lations of µz, which are calculated as the difference between the frozen and non-frozen core
calculations, vary for the test molecules. While these effects increase with the size of the
basis set for the calculations on HF and H2O, they become smaller for the calculations on
BH and oscillate for the calculations on CO. Despite this, their values are around 0.001 a.u.
for the µz calculations, and this is comparable to the errors of the MP2-F12C/aug-cc-pVDZ
calculations of µz. Therefore, it is reasonable to conclude that the influence of the core and
core-valence electron correlations on the dipole moment calculations is not significant, and
calculations with only valence electrons correlated are sufficient. The core and core-valence
correlation effects on the calculations of Θzz appear to be more systematic as they increase
slightly with respect to the basis set size, but their magnitude varies for different molecules.
While these effects are very small for the Θzz calculations on HF and H2O (on the order of
0.0001 a.u.), they are noticeably larger for the calculations on CO (∼ 0.003 a.u.). For the
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Θzz calculations on BH, however, we found that the core and core-valence correlation effects
are significant and cannot be neglected. Hence, there is no consistent conclusion for the core
and core-valence correlation effects on the calculations of Θzz, and it may be necessary to
perform calculations with all electrons correlated in some cases.

Table 5.7: The core and core-valence correlation effects (a.u.) on µz and Θzz for the test
molecules.a

Property X BH HF H2O CO
µz D −0.00200 0.00039 0.00051 −0.00064

T −0.00151 0.00136 0.00187 −0.00091
Q −0.00035 0.00153 0.00210 −0.00035

Θzz D 0.00434 0.00012 −0.00005 0.00226
T 0.01347 0.00037 −0.00026 0.00273
Q 0.01967 0.00040 −0.00030 0.00303

aThe values were computed as the difference between the MP2/aug-cc-pCVXZ results with and without a

frozen core.

5.4 Conclusions

In this work, we present the formalism for computing static one-electron properties with the
MP2-F12 method that is based on modern F12 approaches, such as the CABS approach and
approximation C. We tested the performance of MP2-F12 in detail for accurate computation
of the electric dipole and quadrupole moments for four molecules, BH, HF, H2O, and CO,
with two basis set families. We found that the contributions from the direct (unrelaxed)
density and orbital response effects are very different in the CABS singles and MP2 correla-
tion corrections to the dipole and quadrupole moments. In the CABS singles correction, we
can simply neglect the orbital response effects, whereas both the direct density and orbital
response contributions are important in the MP2 correlation contribution. On the other
hand, orbital response effects are the dominant contribution in the F12 correlation, whereas
the direct F12 density contribution is negligibly small.

We conclude that the CABS singles correction is generally necessary at the double-ζ level for
the Hartree-Fock calculations of dipole and quadrupole moments. The inclusion of the F12
correction significantly reduces the basis set errors of the MP2 correlation contributions to
both dipole and quadrupole moments. With the MP2-F12C/aug-cc-pVDZ calculations, we
can obtain dipole moments close to the basis set limits (the errors are approximately 0.001
a.u.). For quadrupole moments, the MP2-F12C/aug-cc-pVTZ calculations are needed to
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approach the MP2 basis set limits. While we can significantly reduce the computational cost
of the F12 correction by neglecting the coupling terms from the MP2 and F12 corrections,
it does slightly increase the errors in most calculations. The performance of the aug-cc-
pVXZ and cc-pVXZ-F12 basis sets usually differ significantly at the double-ζ level, but the
difference becomes smaller at triple- and quadruple-ζ levels. In general, the F12 calculations
with the aug-cc-pVXZ series give more accurate results comparing to those with the cc-
pVXZ-F12 family; the difference can be attributed to the quality of the cc-pVXZ-F12 basis
sets for the hydrogen atom.
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5.5 Supporting Information

5.5.1 Detailed Expressions for Direct MP2-F12 One-Electron Den-
sity and Contributions to Right-Hand Side of CPHF Equa-
tions

For closed-shell systems, the matrix elements of the direct (unrelaxed) one-electron density
are given in terms of spin-free (not antisymmetrized) integrals as follows:∗

DMP2-F12
IJ = 2 T IKABT

AB
JK − TKIABT

AB
JK +
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0 + 3C2

1

2
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1
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rIJA′Cr
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Intermediates in XAM in terms of spin-free (not antisymmetrized) integrals are as follows:

ḡAlMkD
MP2-F12
kl =

(
2gALMK − gALKM

)
DMP2-F12
KL , (5.34)
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∗I, J denote active occupied (alpha-spin) orbitals, M , N – all occupied orbitals, A, B – all unoccupied
orbitals expressible in the orbital basis set, P , Q – all orbitals expressible in the orbital basis set, A′, B′ –
CABS orbitals, P ′, Q′, R′ – all orbitals. Bar denotes beta-spin spatial orbitals. f are the Fock integrals, g
are the electron repulsion integrals, and r are the integrals of the bare correlation factor, γ(r12). T IJ

AB are

the MP1 amplitudes, and AIJ
AB =

(
fA

′

A rIJA′B + fA
′

B rIJAA′

)
/
(
f II + fJJ − fAA − fBB

)
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5.5.2 Results for x2 and y2 Components of H2O Quadrupole Mo-
ment from F12 Calculations
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Figure 5.7: The (unrelaxed) one-electron density (Dur) and orbital response (Dor) contribu-
tions from the CABS singles and correlation corrections to Θxx and Θyy for H2O. F12 and
F12C refer to the F12 correlation corrections without and with the coupling from the MP2
and F12 corrections.
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Table 5.8: The derivations of the triple-ζ F12 calculations of Θxx and Θyy (a.u.) for H2O
with respect to the estimated basis set limits.a

Method Basis Θxx Θyy

MP2-F12C
b aug-cc-pVTZ −0.00065 −0.00223

cc-pVTZ-F12 0.01130 −0.01023

MP2-F12b aug-cc-pVTZ −0.00067 −0.00254
cc-pVTZ-F12 0.01128 −0.01022

Basis set limit
MP2 — −1.84402 1.95386

aThe basis set limits were the HF/aug-cc-pV6Z values plus the extrapolated MP2 correlation contributions

from the aug-cc-pVQZ and aug-cc-pV5Z values. bThe CABS singles correction was included in the

calculations.
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Figure 5.8: Basis set convergence of MP2 correlation contributions to Θxx for H2O. MP2-
F12C and MP2-F12 refer to the F12-corrected correlation contributions with and without
the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets denote
that the cc-pVXZ-F12 basis sets were used for the oxygen atom while the aug-cc-pVXZ basis
sets were used for the hydrogen atoms.
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Figure 5.9: Basis set convergences of MP2 correlation contributions to Θyy for H2O. MP2-
F12C and MP2-F12 refer to the F12-corrected correlation contributions with and without
the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets denote
that the cc-pVXZ-F12 basis sets were used for the oxygen atom while the aug-cc-pVXZ basis
sets were used for the hydrogen atoms.
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5.5.3 Basis Set Convergence of Various MP2 Correlation Contri-
butions to z Components of Dipole Moment
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Figure 5.10: Basis set convergence of MP2 correlation contributions to µz for BH. MP2-
F12C and MP2-F12 refer to the F12-corrected correlation contributions with and without
the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets denote
that the cc-pVXZ-F12 basis sets were used for the boron atom while the aug-cc-pVXZ basis
sets were used for the hydrogen atom.
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Figure 5.11: Basis set convergence of MP2 correlation contributions to µz for the HF
molecule. MP2-F12C and MP2-F12 refer to the F12-corrected correlation contributions
with and without the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12
basis sets denote that the cc-pVXZ-F12 basis sets were used for the fluorine atom while the
aug-cc-pVXZ basis sets were used for the hydrogen atom.
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Figure 5.12: Basis set convergence of MP2 correlation contributions to µz for H2O. MP2-
F12C and MP2-F12 refer to the F12-corrected correlation contributions with and without
the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets denote
that the cc-pVXZ-F12 basis sets were used for the oxygen atom while the aug-cc-pVXZ basis
sets were used for the hydrogen atoms.
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5.5.4 Basis Set Convergences of Various MP2 Correlation Contri-
butions to z2 Components of Quadrupole Moment
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Figure 5.13: Basis set convergences of MP2 correlation contributions to Θzz for BH. MP2-
F12C and MP2-F12 refer to the F12-corrected correlation contributions with and without
the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets denote
that the cc-pVXZ-F12 basis sets were used for the boron atom while the aug-cc-pVXZ basis
sets were used for the hydrogen atom.
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Figure 5.14: Basis set convergences of MP2 correlation contributions to Θzz for the HF
molecule. MP2-F12C and MP2-F12 refer to the F12-corrected correlation contributions with
and without the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis
sets denote that the cc-pVXZ-F12 basis sets are used for the fluorine atom while the aug-
cc-pVXZ basis sets were used for the hydrogen atom.
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Figure 5.15: Basis set convergence of MP2 correlation contributions to Θzz for H2O. MP2-
F12C and MP2-F12 refer to the F12-corrected correlation contributions with and without
the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets denote
that the cc-pVXZ-F12 basis sets were used for the oxygen atom while the aug-cc-pVXZ basis
sets are used for the hydrogen atoms.
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5.5.5 F12 Corrected Correlation Contributions to the Compo-
nents of the H2O Quadrupole Moment, r2

α, with Different
Basis Sets
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Figure 5.16: Basis set convergence of F12-corrected correlation contributions to 〈x2〉 for
H2O. MP2-F12C and MP2-F12 refer to the F12-corrected correlation contributions with and
without the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets
denote that the cc-pVXZ-F12 basis sets were used for the oxygen atom while the aug-cc-
pVXZ basis sets were used for the hydrogen atoms.
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Figure 5.17: Basis set convergence of F12-corrected correlation contributions to 〈y2〉 for
H2O. MP2-F12C and MP2-F12 refer to the F12-corrected correlation contributions with and
without the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets
denote that the cc-pVXZ-F12 basis sets were used for the oxygen atom while the aug-cc-
pVXZ basis sets were used for the hydrogen atoms.
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Figure 5.18: Basis set convergence of F12-corrected correlation contributions to 〈z2〉 for
H2O. MP2-F12C and MP2-F12 refer to the F12-corrected correlation contributions with and
without the coupling from the MP2 and F12 corrections. The (aug-)cc-pVXZ-F12 basis sets
denote that the cc-pVXZ-F12 basis sets were used for the oxygen atom while the aug-cc-
pVXZ basis sets were used for the hydrogen atoms.



Appendix A

Following the convention, we used i, j,..., a, b,..., and p, q,... for the occupied, virtual, and
general orbitals in the Hartree-Fock (HF) basis, respectively; α, β,... for the virtual orbitals
in the complete basis, and a′, b′,... for the virtual orbitals in the complete basis that do not
belong to the HF basis. In addition, we labeled spin-orbitals with the lowercase indices (i,
j, α, β...), the spatial parts of alpha orbitals with uppercase indices (I, J , A, B, ...), and
the spatial parts of beta orbitals with uppercase indices with bars (Ī, J̄ , Ā, B̄, etc.).

Details of tensor notation for second-quantized expressions can be found elsewhere, e.g., Ref.
64. The relationship between tensor and Dirac notations is as follows:

Oq
p = 〈p|O(1)|q〉 (A.1)

Grs
pq = 〈pq|G(1, 2)|rs〉 (A.2)

Antisymmettrized matrix elements are denoted with a horizontal line above the operator
symbol:

Ḡrs
pq = Grs

pq −Gsr
pq. (A.3)

Summation is implied over all pairs of indices that appear in the same term of an expression
both in bra and ket (the Einstein summation convention), unless the summation is shown
explicitly.
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O.; Wilson, D. J.; and Ågren, H., Dalton, a molecular electronic structure program,
release 2.0, 2005, see: http:// www.kjemi.uio.no/software/dalton/dalton.html.

[100] TURBOMOLE V6.5 2013, a development of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007;
available from http://www.turbomole.com.

[101] Janssen, C. L.; Nielsen, I. B.; Leininger, M. L.; Valeev, E. F.; Kenny, J. P. and Seidl,
E. T., The massively parallel quantum chemistry program (mpqc): Version 3.0 alpha.

[102] Tew, D. P.; Klopper, W.; Neiss, C. and H ttig, C., Phys. Chem. Chem. Phys., 2007,
9, 1921.



Jinmei Zhang Bibliography 108

[103] Tew, D. P.; Klopper, W.; Neiss, C. and Hättig, C., Phys. Chem. Chem. Phys., 2008,
10, 6325.

[104] Fliegl, H.; Hättig, C. and Klopper, W., Int. J. Quantum Chem., 2006, 106, 2306.

[105] Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.;
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Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni,
R.; Thorsteinsson, T. and Wang, M., Molpro, version 2012.1, a package of ab initio
programs, 2012.

[106] Werner, H.-J.; Adler, T. B.; Knizia, G. and Manby, F. R. In Recent Progress in Coupled
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