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ABSTRACT 

 
A Journey Through the Chemistry of Reactive Intermediates:  

From a Trimethylenemethane Diyl to Electrochemically-Generated Radical Ions 
 
 

by 

Randi Kathleen Gbur 

 

Reactive intermediates, such as those derived from trimethylenemethane (TMM) 

diyls or electrochemically-generated radical ions, provide a versatile platform for 

exploring a wide variety of unique and interesting chemistries.  A particular 

emphasis is placed on gaining a fundamental understanding of these intermediates 

through (a) mechanistic investigations or (b) method development, both of which are 

discussed herein. 

Unlike the reaction of aryl-substituted diazenes, pyrolysis of alkyl-substituted 

diazenes in the presence of molecular oxygen generates an unexpectedly complex 

product mixture. Using deuterium labeling studies, in conjunction with quantum 

calculations, a reasonable mechanistic hypothesis for the decomposition of the 

resultant [3.3.0] peroxide, and subsequent formation of the keto-alcohol and Z-

configured !,"-unsaturated keto-aldehyde, is proposed. Surprisingly, molecule-

assisted homolysis plays a key role in this transformation, the details of which are 

discussed. 



 

 x 

While fulvenes have a rich history taking advantage of their aromatic and 

olefinic characteristics, very little is known about the electrochemical properties of 

these compounds.  One interesting aspect of their electrochemical behavior—the 

elecroreductive cyclization of a fulvene tethered to an !,"-unsaturated ester—is 

examined.  In particular, the details concerning directed product formation via 

temperature control and concentration effects toward dimerization, or toward 

cyclization through a variation of the length of the tether joining the fulvene core to 

the second electrophore are discussed. 

Indirect electron transfer using electrochemical mediators allows many reactions to 

be run under milder redox conditions, e.g. requiring less total energy consumption.  

Unfortunately, in the majority of cases the mediators can’t be recovered; therefore a 

recoverable mediator source would be both economically and ecologically attractive.  

Taking advantage of a generally underappreciated tool in organic electrochemistry, 

viz., the electrode surface, progress towards the modification of electrode surfaces 

with mediator-functionalized terthiophene polymers is presented.  The aim of the 

investigation is to provide a method to recover and reuse electrochemical mediators, 

and thus a sustainable alternative to traditional mediated electrochemistry.  One 

application of interest that will be explored is the anodic oxidative degradation of 

lignin model compounds. 
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Chapter 1 

A Mechanistic Investigation of a Bicyclic Peroxide and the 
Unanticipated Role of Molecule-Assisted Homolysis  

 
 

 

 

 

 

 

 

 

 

 



 

2 

1.1 Introduction 

1.1.1 Organic Peroxides 

Organic peroxides are an important structural motif, and although peroxides are 

traditionally thought of as being unstable or even hazardous substances, this need not 

be the case.  They are commonly used in the initiation of industrial polymerization 

processes,1 as active ingredients in personal care products, such as acne medication,2 

and in the synthesis of biologically relevant natural products.3 For instance, oxygen 

labeling experiments have shown that endoperoxides are important intermediates in 

the biosynthesis of several of the prostaglandins.4  Alkyl peroxyl radicals generated 

from the homolytic cleavage of a peroxide bond, in particular, have long been under 

scrutiny.  While many of these reactive oxygen species are considered toxic,5 

evidence suggests that others are biologically relevant, most notably the antimalarial, 

1–3, and antitumor agents, 6–7, or the prostaglandins PGG2, 4, and PGH2, 5 (Figure 

1). For example, it has been shown that cleavage of the peroxide bond plays a key 

role in the expression of artemisinin’s antimalarial activity.6  Herein we describe the 

chemistry of a remarkably stable bicyclic peroxide generated from a 

trimethylenemethane diyl, and delve into the factors that eventually lead to cleavage 

of the peroxide bond. 
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–20 °C for R = R´ = OMe, to refluxing acetonitrile.13  Photochemical generation of 

the diyl occurs through an n–%* excitation of the azo linkage at wavelengths between 

315 nm and 340 nm.14  The singlet that is produced can undergo rapid 

interconversion with the methylenecyclopropane analog or intersystem cross to 

generate the triplet species, 14.  The rate at which the singlet diyl can be intercepted 

relative to the rate of intersystem crossing determines the ratio of products formed 

from the two spin states.  Trapping of the singlet diyl is believed to proceed 

concertedly and stereospecifically and is regiospecific for the formation of fused 

products.15  Cycloaddition with the triplet species, however, is regio-random and 

proceeds with loss of stereocontrol due to the stepwise, diradical nature of the 

transformation. 

The differences in lifetime of the singlet and triplet TMM diyl can be understood 

by the differences in orbital geometry of the two species.  The lowest singlet state 

exists in a bisected geometry while the triplet maintains a planar, delocalized %-

framework (Figure 3).16  Goodman and coworkers used time-resolved photoacoustic 

calorimetry (PAC) to determine experimentally that the enthalpic barrier between the 

singlet and triplet diyl was 12.7 kcal/mol,17 resulting in a significant difference in 

their lifetimes, viz., 0.28 ns for the singlet and ~900 ns for the triplet diyl.18 
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1.3.2 Initial Oxygen Trapping Results  

Thermolysis was accomplished by heating 37 in a solution of acetonitrile in the 

presence of a continuous stream of oxygen (Scheme 11).  Initially, the reaction was 

allowed to progress at reflux until the starting material was completely consumed. 

Three major products, viz., the expected keto-alcohol, 38, as well as a [3.3.0] 

peroxide, 39, and a Z-substituted #,$-unsaturated keto-aldehyde, 40, were isolated 

and characterized.  A peak showing correlation between the resonances at ~5.3 ppm, 

corresponding to the bridgehead proton, and ~4.9 ppm, corresponding to the methine 

proton, in a 2D NOESY NMR spectrum confirmed the relative cis stereochemistry 

of the [3.3.0] peroxide.  While the crude reaction mixture contained a variety of 

additional products,38 these three accounted for 76% of the isolated mass.  

Characterization of many of the side products proved futile because of the minute 

quantities in which they were isolated.  However, mixtures of several regioisomeric 

products resulting from an apparent cycloaddition reaction with the carbonyl unit of 

an aldehyde, as well as dimeric products, were observed.  Slow addition of the 

diazene to the pre-heated, pre-saturated solution of acetonitrile was attempted in 

order to minimize dimer formation, but no significant difference in the product ratios 

could be detected. 
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To assist in the elucidation of a reasonable mechanistic hypothesis, the order in 

which the products formed was determined.  The peroxide, 11, was the first to form, 

followed by the keto-alcohol, 10, and finally the keto-aldehyde, 12.  From this 

information, we suspected that the peroxide might serve as the precursor of the other 

two products.  This conclusion is consistent with observations made by Wilson and 

Geiser, who isolated and characterized a [3.3.0] endoperoxide as the sole product 

from thermolysis of a bis-substituted diazene in the presence of molecular oxygen.  

No bridged products were observed and the chemistry of the fused peroxide was not 

investigated further.40 

1.3.3 Deuterium Labeling and Initial Thermolysis Results  

To assist in determining the origin of these substances, the deuterium labeled 

diazene, 37-d1, was synthesized in the manner portrayed in Scheme 13.  Thus, 

octanal, 43, was converted to the dithiane, 44, with 1,3-propanedithiol, using ZnCl2 

as a Lewis acid.  Deuterium exchange to form 45 was accomplished by 

deprotonation with n-BuLi and a subsequent quench with D2O, resulting in >90% 

deuterium incorporation as determined by 1H NMR.  The residual undeuterated 

material was carried throughout the ensuing experiments. 
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there is not preferential formation of either the exo- or endo-configuration upon 

oxetane ring formation.  A 1,2-H• shift to generate the tertiary radical, followed by 

collapse of the resulting oxetane ring, produces the keto-aldehyde with the incorrect 

E-configuration.  Alternatively, if closure of the oxygen-centered radical occurs at 

C# of the olefin (pathway b), the resultant epoxide can be transformed into allene 

oxide 54.  Rearrangement of the allene oxide as described by Erden and coworkers,47 

ultimately generates the E-enone.  A similar problem exists for pathways c and d, 

each involving a vinyl radical (e.g., 55 or 56) since rapid equilibration would ensure 

formation of the more stable E-configuration.  Quantum calculations (UB3LYP/6-

31G(d)) were in agreement with the notion that each of these pathways would lead to 

the E-stereochemical outcome. 
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studies were used to facilitate the elucidation of a mechanism for the transformation 

of the peroxide to the other two products.  In the course of these studies, an 

unanticipated concentration effect was observed: it is only when heated in the 

presence of an additive, in this case keto-alcohol 38, that the deuterated peroxide, 

39-d1, is converted to the other two products.  Such is not the case for the protio-

counterpart, 39, in which decomposition is unassisted in the absence of, and 

accelerated in the presence of, 38.  Further inquiry uncovered molecule-assisted 

homolysis of the peroxide bond via hydrogen-bonding with the keto-alcohol and the 

existence of a kinetic isotope effect. 
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Chapter 2 

Blushing Fulvenes With a Splash of Radical for Flavor: Insight Into 
Electrohydrocyclization 
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Without the intervention of a proton donor, what becomes of the initially formed 

radical anion?  To answer this, one must consider the environment at the electrode 

surface, in particular the existence of an ~1 mm “double layer.”  In 1924 Stern 

introduced the idea of an electrochemical double layer by combining the earlier 

theories of Helmholtz75 and Gouy,76 describing a compact layer, d1, directly adjacent 

to the electrode surface and a diffuse layer, d2, between the compact layer and the 

bulk solution (Figure 17).77  Within the compact layer, a highly ordered arrangement 

of counter ions balances the excess charge present on the electrode.  The radius of 

the solvated counter ion, denoted as the Outer Helmholtz Plane (OHP), determines 

the thickness of d1.  As the distance from the electrode increases, the electric field 

decreases, therefore allowing a more diffuse ordering of ion pairs until at a certain 

distance, complete interspersion, i.e. the bulk solution, is reached.  The chemistry 

that can occur in the double layer depends on the rate of diffusion of the substrate 

into the bulk solution.  Interestingly, this suggests that temperature might be used to 

achieve differential product formation.  If, for example, the temperature is increased, 

will the radical ions formed at the electrode gain enough thermal energy to diffuse 

more efficiently/rapidly to the bulk solution?  If so, then differing chemistries might 

be anticipated. 
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wave is shifted by roughly another 100 mV to a still more positive value (note Figure 

23), an outcome that is consistent with an increase in the rate of the cyclization step. 

Figure 22.  Absence of new species being formed during repetitive scans of the 

3-C tether substrate. 

 

Figure 23.  A Nernstian shift in the reduction potential observed for the 3-C tether 

substrate in the presence of a proton donor. 
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2.4 Bulk Electrolysis 

Intrigued by the results of the voltammetric studies, we were keenly interested in 

determining the products that would be derived from the bulk electrolysis of both the 

3- and 4-C tether substrates.  We began by tailoring the experimental conditions to 

maximize the formation of cyclized products.  Thus, preparative scale experiments 

were carried out with a dilute solution of fulvene (5 mM in MeCN) in a divided cell 

in the presence of two equivalents of a proton donor, in this case, 3,5-

dimethylphenol.  Graphite rods were used for the working and counter electrodes, 

and a Ag/0.1 M AgNO3 for the reference electrode.  Due to its hygroscopic nature, 

we elected to use Et4NOTs (0.1 M) as the supporting electrolyte in place of the 

Bu4NBF4 because it could be easily removed during an aqueous work-up.   

2.4.1 The “4-C Tether” Substrate 

Controlled potential electrolysis of F, the substrate with a 4-C tether, was 

accomplished at the reduction potential of the fulvene obtained in the CV studies, 

viz., –2.7 V (vs. Ag/0.1 M AgNO3; note Figure 18).   Following an aqueous work-up 

and isolation by prep-TLC, exhaustive purification by HPLC still afforded a 

complex mixture of products.  Unfortunately, due to the extensive manipulation that 

was needed for the purification process, an accurate yield of each type of product has 

not been possible; however the mass recovery is good, viz., 87%.  The HPLC trace 

for the electrolysis performed at room temperature provided two peaks in a 75 : 25 

ratio (red line, Figure 29a).  While spectroscopic characterization of the HPLC 
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fractions proved to be an arduous task due to the presence of double bond and 

stereoisomers, the nature of the products within each peak was examined using 1H 

NMR.  As described below, the first, and major, peak was attributed to cyclized 

products and the minor peak to a dimer/cyclized product mixture.   

It was evident that more than one product was isolated in the fraction from the 

major peak in the HPLC trace (Figure 29a), therefore a 2D COSY spectrum was 

crucial for differentiating product structures.  Three major signals exist in the vinyl 

region from 5.95 – 6.45 ppm, labeled as A–C in the 1H NMR spectrum (Figure 24).  

If one considers the correlation signals between these protons in the COSY 

spectrum, it is evident that HA couples to HB, which in turn is coupled to HC (Figure 

25).  While this could be consistent with the “fused” structure, such as 95 illustrated 

in Figure 25, two contradictions arise when one examines the signals corresponding 

to the doubly allylic protons at 2.9 ppm, labeled D/D’.83  First, it can be seen from 

the COSY NMR spectrum that these diastereotopic protons couple exclusively with 

the signal attributed to HC.  If the product structure were consistent with 95, the 

allylic proton, H5, would show a correlation not only to the vinyl proton, HC, but also 

to a neighboring alkyl proton, H6.  This is not the case.  In addition, the second order 

splitting pattern for HC should be less complex if it coupled solely with HB and H5 in 

the fused structure, 95.  Thus, it was postulated that the dominant cyclized product 

possessed the co-joined structure with the double bond configuration as indicated in 

structure 92.   
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constitute the major peak (Figure 29b).  If such a dramatic effect could be observed 

for a reduced reaction temperature, we wondered if this could also be applied to the 

reverse, that is, if the temperature was raised.  Unfortunately, increasing the reaction 

temperature to 35 ºC did not have a proportionate effect on the product distribution, 

resulting in only a slight increase from a 75 : 25 to an 87 : 13 cyclized/dimer ratio. 

2.4.3 The “3-C Tether” Substrate 

What happens to the preparative chemistry when the tether length is decreased 

from four to three?  A Nernstian shift in reduction potential was previously described 

during the CV studies of fulvene 76 (n = 3, note Figure 22), suggesting the existence 

of an efficient follow-up reaction, but is this reflected in the product distribution 

resulting from a bulk electrolysis?  Preliminary results indicate that the chemistry is 

much cleaner for the substrate possessing a 3-C tether than for electrolysis of the 4-C 

tether substrate under identical conditions.  At room temperature, for example, it 

appears by 1H NMR that a single cyclized product consistent with the co-joined 

structure is formed with minimal dimeric side-products.  Further spectroscopic 

characterization, viz., 2D NMRs, as well as additional experiments regarding the 

temperature dependence, i.e. reactions carried out at 0 ºC and 35 ºC, are needed 

before direct correlations to the 4-C tether case can be made. 

2.5 Conclusion 

With the versatility of fulvenes being vast,84 we endeavored to add to their 

repetoire by investigating one interesting aspect of their electrochemical behavior.  
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In particular, the elecroreductive cyclization of a fulvene tethered by either three or 

four methylene units to an #,$-unsaturated ester was explored.  Ultimately, product 

formation could be directed via temperature control and concentration effects toward 

dimerization, or toward cyclization through a variation of the length of the tether 

joining the fulvene core to the second electrophore. 
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Chapter 3 

Mediator Modified Electrodes for Use in Heterogeneous Catalysis 
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3.1 Introduction 

3.1.1 Modified Electrodes 

Electrochemistry has demonstrated its versatility across many disciplines, but the 

electrode surface is often underappreciated, particularly by practitioners of organic 

synthesis, as a powerful tool for tailoring electrochemical processes.  In 1973, Lane 

and Hubbard were the first to report irreversible adsorption of organic molecules to a 

metal electrode surface.85  Benefiting from the strong affinity of olefins for platinum, 

various olefin-containing quinones were chemisorbed to the electrode surface by 

soaking a platinum electrode in a solution containing the desired organic compound.  

Surface coverage experiments determined that the irreversible attachment resulted 

from %-bonds being replaced with Pt–C &-bonds.  Later, Murray and coworkers 

coined the term “chemically modified electrode” to describe a SnO2 electrode 

surface functionalized with silanes tethered to a terminal amine, which effectively 

provided a platform for immobilizing RuII complexes to the surface.86  In the ensuing 

decades, electrochemists have taken advantage of the ability to modify electrode 

surfaces with small molecules, polymers, and metals, turning “heterogeneous, 

unpredictive surfaces into chemically predictive ones.”86,87 

Since the pioneering work in the mid-1970’s, numerous covalent attachment 

methods have been developed for immobilizing reagents onto electrode surfaces, 

including silanization of surface hydroxyls of metal oxides88 and diazotization of 

carbon surfaces.89  Alternatively, the most common non-covalent mode of 
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attachment is adsorption (Figure 30).  For example, chemisorption, an adsorption 

technique that requires direct contact between an adsorbed molecule and the surface, 

deposits a monolayer of the substrate on the surface.  Anson and coworkers provided 

one of the earliest examples, one where aromatic compounds were adsorbed to 

carbon electrodes via shared %-electron density.90  Although many chemisorption 

methods do not offer fully irreversible attachment because of the occurrence of 

gradual leaching of the adsorbed molecule into the surrounding solution, recent 

advances in derivatizing gold surfaces with thiols seems to circumvent this issue.91  

In 1987, Facci described the Langmuir-Blodgett method to coat electrode surfaces in 

multilayer films.  This adsorption technique takes advantage of the self-assembly 

properties of amphiphilic molecules, i.e. ones containing a redox active hydrophilic 

“head” group and a hydrophobic “tail,” to generate highly ordered monolayers.92  

Polymer films, which were independently introduced by Miller93 and Bard94 in 1978, 

are arguably the most versatile multilayer adsorption method used.  Redox active 

polymeric coatings can be generated from either a pre-formed polymer or by in situ 

polymerization of a monomer.  Pre-formed polymers offer the advantage of being 

isolable materials, and therefore traditional purification and characterization 

techniques can be used before film deposition by spin casting, droplet evaporation or 

adsorption from solution.88  However, it can be difficult to control the amount of 

polymer actually adsorbed on the electrode.  In situ electrodeposition of the polymer 

film using cyclic voltammetry allows control over film thickness simply by varying 

the number of scans. 
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active due to the presence of highly conjugated groups through which extensive 

charge delocalization can occur, resulting in conductive properties akin to metals.  

Commonly used electroactive polymers are polypyrrole, polyaniline, and 

polyacetylene.  Thiophene-based polymers will form the focus of the discussions to 

follow. 

3.1.2 Mediated Electrochemistry 

The chemistry community is placing an overwhelming emphasis on developing 

methods that are considered environmentally sustainable.  Indirect electrolysis using 

mediators offers the advantage of being able to use milder reaction conditions for 

electron transfer processes by requiring lower potentials and therefore a decrease in 

total energy consumption.  In a typical electrochemical reaction, the substrate 

undergoes a direct oxidation or reduction at the electrode to generate the 

corresponding radical ion.  Alternatively, indirect electrolysis of a substrate in the 

presence of a mediator involves two steps: heterogeneous electron transfer to 

oxidize/reduce the mediator and a subsequent homogeneous electron transfer from 

the mediator to the substrate, concurrently regenerating the neutral mediator (Figure 

31).  One consequence of the catalytic turnover of the mediator is an amplification of 

the current response, referred to as “catalytic current,” due to the simultaneous 

presence of multiple ionic species near the electrode. 
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be 6.5 x 10-11 m2s-1,108 five orders of magnitude smaller than a “tethered” ferrocene 

monolayer on a gold electrode,109 which has a diffusion coefficient of  

5.1 x 10-6 m2s-1 in a similar solvent/electrolyte system.  Simply explained, only a 

fraction of the electroactive sites, viz., those near the electrode surface, can be 

oxidized in a thick multilayer film during a single votammetric scan.  Thus a charge 

diffusion layer is created and, as accumulation of oxidized species occurs as the 

charge diffuses through the film and new oxidation sites become available, increases 

in current and peak tailing are observed.  These effects become more pronounced as 

the film thickness grows with additional scans.  The kinetic dependence on scan rate 

is consistent with the Randles-Sevcik equation, which will be discussed in more 

detail later.  The appearance of the peak at approximately +0.7 V is attributed to the 

reduction of the bulk polymer (pTTh) to pTTh–.  Wakeham and coworkers report a 

similar observation in the electrochemical characterization of poly(2,2':5',2'-

terthiophene).108 

The presence of the polymeric film on the electrode was confirmed and its 

surface morphology examined using scanning electron microscopy (SEM) and 

atomic force microscopy (AFM).110  Samples were prepared on a carbon paper and 

on a silicon wafer anode by sweeping for ten cycles between +0.45 and +0.95 V 

using the polymerization conditions described previously.  It can be seen in the AFM 

(Figure 38a) and SEM (Figure 38b) images that a porous polymer film 

approximately 300 nm thick was deposited on the electrodes.  The smooth surface of 

the silicon wafer was characterized by homogeneous film coverage, in contrast to the 
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carbon paper, which had regions of exposed electrode apparent in the SEM image.  

Wakeham observed similar porosity in the bulk poly(2,2':5',2'-terthiophene) 

deposited on indium tin oxide (ITO) on glass.108 The ramifications of these 

inhomogeneities on the catalytic properties of this modified electrode are not clear.  

An IR spectrum of the modified carbon paper electrode produced a characteristic 

peak for azides at 2168 cm-1, confirming that the azide functionality was able to 

withstand the polymerization conditions. 

Figure 38.  Polymeric film imaged by (a) AFM on a silicon wafer and (b) SEM on 

carbon paper 

 

While the mediators were being synthesized, a test “click” reaction was 

performed using phenyl acetylene (Scheme 37).  An azide-modified electrode was 

placed in a solution containing copper powder, Cu(MeCN)4PF6, and phenyl 

acetylene in acetonitrile for three days.  Qualitatively, during that time, the orange 

polymeric sheen had faded to a matte hunter green, which suggested that a reaction 

had taken place.  The “clicked” electrode was washed thoroughly with acetonitrile 
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Figure 41.  CV curve demonstrating catalytic current for the oxidation 

illustrated in Scheme 52. 

 

3.3.4 Lignin Model System 

One goal is to use modified electrodes for electrochemical oxidative degradation 

of lignin.  To this end, lignin model systems were synthesized following slightly 

modified procedures of Bolm and co-workers.134  Initially, commercially available 2-

methoxyphenol was alkylated using ethyl bromoacetate and potassium carbonate in 

acetone (Scheme 53).  The resulting ester, 127, was deprotonated using LHMDS at –

78 ºC and then coupled to 3,4-dimethoxybenzaldehyde to generate the condensation 

product 129.  Unfortunately, this second step was low yielding with a nearly racemic 

mixture of diastereomers, which proved difficult to separate. 
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Figure 42.  Plot of the relationship between scan rate and peak current for the 

terthiophene-modified electrode. 

 

The Randles-Sevcik equation (Equation 1) predicts a positive, linear relationship 

between peak current, ip, and the square root of the scan rate ("1/2) for an 

electrochemically reversible, diffusion controlled process occurring at the electrode 

surface.135  Current is a function of both charge and time; therefore, as the scan rate 

increases, the charge passed per unit time is greater resulting in an increase in the 

peak current.  Obeying Randles-Sevcik-type kinetics, a reasonable coefficient of 

determination (R2 = 0.96) was observed for this system, providing evidence that the 

polymer is adsorbed to the electrode surface and confirming that the electron transfer 

process is fully reversible, i.e. no degradation occurred upon repetitive cycling.  

These results, in conjunction with conserved reversibility of the triarylamine CV 

curve after 1000 consecutive scans (" = 0.1 V/s) over the potential range described 

previously, confirmed the durability of both the mediator and polymeric film. 
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because polymer characterization can be carried out readily with using advanced 

imaging techniques (AFM, SEM, etc.), and it is possible for qualitative film 

deposition to be observed visually.  “Soft” carbon electrodes (viz., carbon felt, 

graphite rods) generally offer a larger surface area and are closer to the model 

system (carbon paper) used in the CV studies.  Furthermore, the ability of the 

polymerized material to remain adsorbed to the smooth carbon surface of “hard” 

carbon electrodes could prove problematic, as was observed with the silicon wafers 

used during AFM/SEM sample preparation. 

Therefore, the initial electrode modified for bulk electrolysis was an ~ 5 cm x 1.5 

cm x .5 cm carbon felt strip “sewn” with copper wire to which the alligator clip 

could be attached.  The polymerization was carried out by sweeping ten times 

between 0 and +0.95 V (vs. Ag/ 0.1 M AgNO3), in a 0.1 M Bu4NPF6 solution in 

acetonitrile.  Unfortunately, the larger quantity of substrate required for the 

modification of this electrode was not completely soluble in pure acetonitrile.  A 

small amount of dichloromethane (< 500 µL) was added to ensure complete 

dissolution of the monomer into the electrolytic solution.  When the carbon felt was 

immersed in the solution, a significant amount of solvent was absorbed, resulting in 

swelling of the electrode.  This proved problematic for several reasons:  unwanted 

absorption of the electrolyte solution could mean inefficient polymerization (i.e. 

does the monomer adsorb as readily as the supporting electrolyte, etc.) and 

inaccurate accountability for what is actually in/on the electrode during catalysis.  

When the electrode was pre-saturated in pure acetonitrile, no further swelling was 
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All four modified electrode types were independently tested on the benzylic 

oxidation reaction depicted in Scheme 55.  The carbon felt electrode showed almost 

complete conversion of the substrate to product by TLC.  Although these results 

were very promising, a spot consistent with the starting monomer was also observed.  

This is indicative that even though the electrode was washed thoroughly after the 

polymerization step, some monomer remained absorbed in the electrode material.  

Even if excess monomer could be completely washed out of the electrode after 

polymerization, it would be difficult to ascertain if any reaction components 

remained absorbed in the felt after bulk electrolysis experiments.  This would render 

the electrode unfit for reuse and therefore carbon felt was discounted as a viable 

electrode material.  Partial conversion of the substrate (< 10%) was observed when 

using either of the modified RVC electrodes.  For the RVC electrode with a smaller 

mesh size, attaching the copper wire proved precarious because the material was 

sufficiently brittle that any excessive force caused the electrode to chip away.  

Although the iridescent sheen characteristic of the polymeric film was observed on 

both types of RVC surfaces, after washing the electrodes with a stream of 

acetonitrile and ether, the sheen seemed to have disappeared.  This was indicative of 

an insecure adsorption of the film to the electrode surface.  It is possible that 

alternative washing methods, i.e. dipping in solvents, would temporarily solve these 

issues, however it would not attest to the robustness of the modification, a critical 

goal of this method.  No reaction was observed when the modified copper wire was 
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used as the working electrode although charge was being consumed; presumably this 

was a result of the observed corrosion of the copper wire.  

Several critical questions have yet to be answered: why does the polymeric 

complex adsorb irreversibly to the carbon paper electrode used in CV studies but this 

does not translate to bulk scale carbon electrode materials?  Is it necessary to use a 

platinum electrode and does a lifecycle analysis allow for the turnover numbers of 

the catalyst to outweight the cost of using a precious metal electrode?  And most 

importantly, is it necessary for a polymeric backbone to be employed or can these 

issues be circumvented with direct, covalent modification of an electrode surface? 

3.5 Conclusion 

With a continued drive to develop environmentally friendly chemical methods, 

this work described the modification of electrodes with electrochemical mediators 

for eventual use as heterogeneous catalysts in the oxidative degradation of lignin 

model compounds.  Various attachment methods were explored, ranging from the 

use of “click” chemistry to SN2 displacement reactions, and, most successfully, 

sequential esterifications.  Furthermore, a variety of mediators were investigated, 

including the well-studied metal salens for reductions, and triarylamines and 

triarylimidazoles for oxidations.  While this method shows promise for successful 

electrode modification, further investigations into the fundamental chemistry is 

required before widespread appeal to a broad audience can be achieved. 
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EXPERIMENTAL PROCEDURES AND SPECTRAL DATA 

General Procedures.  In reactions where water was not present as a solvent, 

reagent, or by-product, all glass vessels were flame-dried unless otherwise noted.  A 

slight positive pressure of dry argon was maintained via rubber septum seal during 

the course of the reaction.  Reagents were purchased from commercial vendors and 

used as received unless otherwise stated.  Tetrahydrofuran (THF) was distilled from 

sodium and benzophenone.  Methanol (MeOH) was distilled from Mg(OMe)2.  

Ethanol (EtOH) was distilled from Mg(OEt)2.  Dichloromethane (CH2Cl2) and 

acetonitrile (MeCN) were distilled from CaH2.  Pyrrolidine and diethylamine were 

distilled from Ba(OH)2 at atmospheric pressure.  Reactions were monitored by 

analytical thin-layer chromatography on hard layer silica gel-60F-250.  Visualization 

was effected by ultraviolet light (254 nm), followed by staining (p-anisaldehyde).  

Removal of solvents was typically accomplished using a rotary evaporator.  Silica 

gel (60, particle size 0.043–0.063 mm) was used for flash column chromatography.  

NMR spectra were recorded on a 400, 500, or 600 MHz instrument and calibrated 

using residual undeuterated solvent as an internal reference.  The following 

abbreviations (or combinations thereof) are used to explain the multiplicities: s = 

singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet. 
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0.848 mmol, 1.0 equiv) in dry acetonitrile (17.0 mL, 0.05 M) was added to the 

reaction vessel and oxygen was bubbled through the solution for 10 minutes.  The 

solution was heated to 55 °C, with continuous oxygen flow, until the presence of 

compounds 10, 11, and 12 were visualized by TLC.  After cooling to room 

temperature, the crude acetonitrile solution was extracted with pentane (5 x 20 mL) 

to avoid heating and further reaction progress during evaporation of the solvent.  The 

combined pentane extracts were concentrated in vacuo.  The products (135 mg, 

0.642 mmol, 76%) were separated and purified by, first, performing a prep-TLC 

with 5% ether in pentane to isolate the peroxide and then 10% ether in pentane to 

isolate the keto-alcohol and keto-aldehyde.  Recovered starting material accounted 

for an additional 25.0 mg (14%) of the recovered mass and was isolated in the first 

prep-TLC.  TLC: (25% ether in pentane) Rf
SM = 0.5 (lime green, UV), Rf

PEROXIDE = 

0.95 (brown, light UV), Rf
KETO-ALD = 0.25 (blue, UV), Rf

KETO-ALC = 0.2 (maroon, 

UV). 

2-Heptyl-3,4-dioxabicyclo[3.3.0]oct-1(8)-ene (39). 32.0 mg, 0.152 mmol, 18% 

yield. 1H NMR (600 MHz; CDCl3): $ 5.58 (dq, J = 3.5, 1.8 Hz, 1H), 5.34-5.31 (m, 

1H), 4.57-4.54 (m, 1H), 2.89 (dtdd, J = 16.0, 8.0, 3.8, 2.0 Hz, 1H), 2.76 (ddddd, J = 

16.0, 8.0, 3.3, 2.2, 1.1 Hz, 1H), 2.21-2.17 (m, 1H), 1.81 (dtd, J = 12.6, 9.3, 7.3 Hz, 

1H), 1.74-1.63 (m, 2H), 1.48-1.39 (m, 2H), 1.34-1.23 (m, 8H), 0.87 (t, J = 7.1 Hz, 

3H); 13C NMR (150 MHz; CDCl3): ! 157.1, 121.7, 91.6, 78.5, 38.8, 34.6, 32.0, 30.6, 

29.7, 29.4, 26.3, 22.9, 14.3; IR (neat, cm-1): 3063, 2928, 2855, 1620, 1559, 1501, 

1458, 1049; HRMS (ESI) calcd for [C13H22O2 + Na]+ 233.1517, found 233.1521. 
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(Z)-6-Oxotridec-4-enal-5-d (40-d1). 14.0 mg, 0.0665 mmol, 17%. 1H NMR (600 

MHz; CDCl3): $ 9.78 (t, J = 1.4 Hz, 1H), 6.08 (dd, J = 9.5, 4.6 Hz, 1H), 2.92-2.88 

(m, 2H), 2.62 (td, J = 7.08, 2.35 Hz, 2H), 2.45 (t, J = 7.4 Hz, 2H), 1.61-1.57 (m, 2H), 

1.30-1.25 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H); 13C NMR (150 MHz; CDCl3): $ 202.0, 

201.7, 145.3, 127.9, 44.5, 43.4, 31.9, 29.4, 29.3, 24.1, 22.8, 22.4, 14.3; IR (neat, cm-

1): 3024, 2955, 2924, 2855, 2816, 2716, 1728, 1682, 1613, 1408, 1373, 1149, 1080; 

HRMS (ESI) calcd for [C13H21DO2 + Na]+ 234.1580, found 234.1580. 

General procedure for 
1
H NMR analysis of peroxide or diazene decomposition:  

A J young NMR tube was dried in a vacuum oven overnight and subsequently 

cooled under argon.  A solution of the substrate in dry acetonitrile-d3 was added to 

the NMR tube and oxygen was bubbled through the solution for 20 minutes.  The 

NMR tube was sealed and an initial 1H NMR spectrum was obtained as a baseline 

measurement.  The solution was heated to 55 °C in an oil bath and subsequent 1H 

NMR spectra were recorded at 30-minute intervals with an ice bath “quench” before 

each analysis. 

Quantum calculations. Calculations carried out at UCSB used Spartan 08 for 

Macintosh software. Geometries were optimized using the B3LYP/6-31+G(d) 

method. The transition structure was characterized by a frequency calculation for 

which there was one and only one imaginary frequency.  That the transition structure 

was an accurate representation for the conversion of the peroxide to the unsaturated 

keto-aldehyde was verified using an intrinsic reaction coordinate (IRC) calculation 

that was carried out by Professor D. J. Tantillo at UC Davis. 
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(dq, J = 5.3, 1.7 Hz, 1H), 6.50-6.46 (m, 2H), 6.39 (t, J = 7.9 Hz, 1H), 6.20 (dt, J = 

5.2, 1.7 Hz, 1H), 5.74 (dt, J = 15.6, 1.5 Hz, 1H), 2.54 (q, J = 7.4 Hz, 2H), 2.20 (qd, J 

= 7.1, 1.4 Hz, 2H), 1.59-1.50 (m, 4H). 
13C NMR (126 MHz; CDCl3): ! 166.2, 147.6, 

146.4, 142.6, 133.4, 131.1, 125.8, 123.5, 119.3, 80.3, 32.1, 31.1, 29.2, 28.5, 28.1; IR 

(neat, cm-1): 3074, 2956, 2930, 1715, 1650, 1471, 1455, 1363, 1078; HRMS (FI) 

calcd for [C17H24O2]
+ 260.1776, found 260.1781. 

General procedure for bulk electrolysis of fulvenes 84 (n = 3, 4).  An H-cell 

(Figure 2SI) with a stir bar in each of the two chambers, connected by a fine porosity 

glass frit, was dried in a vacuum oven for 4 hours and then cooled under argon.  

During that time, a 0.1 M solution of the supporting electrolyte, Et4NOTs, in dry 

acetonitrile (0.01 M relative to the fulvene) was degassed by bubbling with argon for 

25-30 minutes.  The anode and cathode chambers were equipped with freshly 

cleaned carbon rods and an equal volume of the supporting electrolyte solution was 

added to each chamber.  To the cathode chamber was added the fulvene (1 equiv) 

and proton donor, dimethyl phenol (2 equiv), and the reference electrode (Ag/0.1 M 

AgNO3) was positioned as close to the cathode as possible.  The fixed potential (–2.7 

V) was applied until the theoretical number of coulombs were consumed, or until 

complete conversion of the fulvene was observed by TLC.  The cathode solution was 

removed and extracted with pentane (3 x twice the volume of MeCN).  If product 

was still present in the acetonitrile layer, as determined by TLC, additional 

extractions were performed.  The combined pentane extracts were washed once with 

3 N NaOH to remove dimethyl phenol, once with brine, and then dried over MgSO4.  















 

131 

1:1 mixture of ethyl acetate to hexanes, to yield a pale yellow solid (28.4 mg, 0.0360 

mmol, 41%).  1H NMR (500 MHz; CDCl3): ! 7.35-7.32 (m, 4H), 7.23-7.16 (m, 5H), 

7.08 (dd, J = 5.1, 3.6 Hz, 1H), 7.02-6.98 (m, 3H), 6.93-6.90 (m, 4H), 5.16 (s, 2H), 

5.06 (s, 2H), 2.74-2.70 (m, 4H); 13C NMR (151 MHz; CDCl3): ! 172.26, 172.21, 

147.2, 146.5, 136.75, 136.71, 136.3, 134.4, 132.9, 132.6, 130.9, 129.9, 128.1, 

127.08, 127.05, 126.81, 126.76, 126.6, 125.9, 125.13, 125.09, 124.31, 124.27, 

124.16, 116.0, 77.4, 77.2, 77.0, 66.4, 60.6, 29.4; IR (neat, cm-1): 3105, 3068, 3033, 

2930, 2853, 1732, 1611, 1578, 1510, 1485, 1311, 1271, 1151, 1071, 1006, 821, 697; 

HRMS (ESI) calcd for [C36H27O4NS3Br2 + Na]+ 813.9367, found 813.9350. 

General procedure for electrochemical polymerization of terthiophene 

derivatives.  In a dried CV cell, a light yellow solution of terthiophene monomer 

(5.0 mM) and Bu4NPF6 (0.1 M) in dry acetonitrile was degassed by bubbling with a 

constant stream of argon for 10 minutes.  The CV set-up was then assembled with a 

glassy carbon counter electrode, the Ag/0.1 M AgNO3 reference electrode, and 

carbon paper working electrode.  Sweeping ten cycles between +0.4 and +0.95 V at 

a scan rate of 100 mV/s changed the solution to a bright yellow-green (Figure 3SI) 

and deposited a visible layer of polymer on the working electrode.  The working 

electrode was removed, rinsed with copious amounts of acetonitrile, to remove 

residual monomer, and subsequently dried in vacuo before further use. 
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